Answer
Verified
460.5k+ views
Hint:Oxidation number is defined as the total number of electrons than an atom either gains or loses in order to form a chemical bond with the atom and form a compound.
Complete step by step answer:
Iodine belongs from the $7A$ group and it is a non-metal and having oxidation state $ - 1$ i.e., it always needs 1 electron to complete its octet and come in stable state. For example, if we consider $\mathop {BrCl}\nolimits_2 $ in this bromine having oxidation state of $ + 2$ because $Cl$ is more electronegative. For calculating the oxidation number, we take all the charges on the right-hand side and equal to zero.
The oxidation state is the number of electrons that are lost, gained, or shared by a certain atom with other atoms in the same molecule
Here, we will focus on all the fixed components and then work out the oxidation state of $I$. The net charge on the molecule is 0. Therefore, all the oxidation states will add up to 0 after they are multiplied by the number of molecules.
\[({\text{oxidation state of}} K) + ({\text{oxidation state of I}}) + (3 \times {\text{oxidation state of O}}) = 0\]
Let the oxidation state of $I$ be $x$
We know that almost all elements from group 1 have an oxidation state of $ + 1$. This rule never changes. Thus, we will assume that the oxidation state of $K$ is $ + 1$. And the oxidation state of $O$ is $ - 2$.
Now plugging in the numbers in the equation given above, we get,
\[[ + 1] + [x] + [3 \times ( - 2)] = 0\]
$ \Rightarrow 1 + x - 6 = 0$
$ \Rightarrow x - 5 - 0$
$ \Rightarrow x = + 5$
So, the oxidation state of $I$ is $ + 5$
Thus, the oxidation state of $I$ $ + 5$ is when the oxidation states of $K$ and $O$ are $ + 1$ and $ - 2$ respectively.
Note:Always check what the net charge on the given ion or molecule is, this will change the number present on the R.H.S. of the equation.
For example: If we consider \[\mathop {SO}\nolimits_4^{2 - } \] then to calculate the oxidation state of $S$, we need to consider the equation.
\[({\text{oxidation state of S}}) + (4 \times {\text{oxidation state of O}}) = - 2\]
Let the oxidation state of $S$ be $x$
Then, $[x] + [4 \times ( - 2)] = - 2$
$ \Rightarrow x + ( - 8) = - 2$
$ \Rightarrow x = + 6$
Here the oxidation state of S will be +6. If we do not pay attention to the net charge, the answer will turn out to be +8, which is not possible
Complete step by step answer:
Iodine belongs from the $7A$ group and it is a non-metal and having oxidation state $ - 1$ i.e., it always needs 1 electron to complete its octet and come in stable state. For example, if we consider $\mathop {BrCl}\nolimits_2 $ in this bromine having oxidation state of $ + 2$ because $Cl$ is more electronegative. For calculating the oxidation number, we take all the charges on the right-hand side and equal to zero.
The oxidation state is the number of electrons that are lost, gained, or shared by a certain atom with other atoms in the same molecule
Here, we will focus on all the fixed components and then work out the oxidation state of $I$. The net charge on the molecule is 0. Therefore, all the oxidation states will add up to 0 after they are multiplied by the number of molecules.
\[({\text{oxidation state of}} K) + ({\text{oxidation state of I}}) + (3 \times {\text{oxidation state of O}}) = 0\]
Let the oxidation state of $I$ be $x$
We know that almost all elements from group 1 have an oxidation state of $ + 1$. This rule never changes. Thus, we will assume that the oxidation state of $K$ is $ + 1$. And the oxidation state of $O$ is $ - 2$.
Now plugging in the numbers in the equation given above, we get,
\[[ + 1] + [x] + [3 \times ( - 2)] = 0\]
$ \Rightarrow 1 + x - 6 = 0$
$ \Rightarrow x - 5 - 0$
$ \Rightarrow x = + 5$
So, the oxidation state of $I$ is $ + 5$
Thus, the oxidation state of $I$ $ + 5$ is when the oxidation states of $K$ and $O$ are $ + 1$ and $ - 2$ respectively.
Note:Always check what the net charge on the given ion or molecule is, this will change the number present on the R.H.S. of the equation.
For example: If we consider \[\mathop {SO}\nolimits_4^{2 - } \] then to calculate the oxidation state of $S$, we need to consider the equation.
\[({\text{oxidation state of S}}) + (4 \times {\text{oxidation state of O}}) = - 2\]
Let the oxidation state of $S$ be $x$
Then, $[x] + [4 \times ( - 2)] = - 2$
$ \Rightarrow x + ( - 8) = - 2$
$ \Rightarrow x = + 6$
Here the oxidation state of S will be +6. If we do not pay attention to the net charge, the answer will turn out to be +8, which is not possible
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE