
Find the physical quantity.
\[(A)ML{T^{ - 1}}\]
\[(B)M{L^0}{T^{ - 2}}\]
Answer
417.9k+ views
Hint: The checking relations between the physical quantities by identifying the dimensions of these physical quantities are called dimensional analysis. All the physical quantities can be expressed using 7 basic dimensions. These are mass\[\left( M \right)\], length\[\left( L \right)\], time\[\left( t \right)\], current\[\left( A \right)\], temperature\[\left( K \right)\], luminous intensity\[\left( {Cd} \right)\], and amount of substance\[\left( {mol} \right)\].
Formula used:
\[Momentum = Force \times time\]
\[Surface\]\[tension = \dfrac{{force}}{{unitlength}}\]
Complete step-by-step solution:
Momentum is simply called as the mass in motion. If the object is moving it possesses momentum, because all the objects have mass. The product of its mass and the velocity by which the object is moving is called the Momentum of a body.
\[\begin{gathered}
Momentum = Force \times time \\
Force = mass \times acceleration \\
momentum = mass \times acceleration \times time \\
\end{gathered} \]
The dimensional formula of these basic quantities
The dimensional formula of mass is\[\left[ M \right]\].
The dimensional formula of acceleration is\[\left[ {L{T^{ - 2}}} \right]\].
The dimensional formula of time is\[\left[ T \right]\].
Substituting these dimensional formulas
\[I = Mass \times acceleration \times time\]
\[ \Rightarrow \left[ I \right] = \left[ M \right] \times \left[ {L{T^{ - 2}}} \right] \times \left[ T \right]\]
\[ \Rightarrow \left[ I \right] = \left[ {ML{T^{ - 1}}} \right]\]
Hence, the Impulse is dimensionally represented as \[\left[ {ML{T^{ - 1}}} \right]\]
Surface tension is defined as the tendency of the fluid surfaces to shrink into the minimum surface area possible. It can be determined by the difference in the interactions between the molecules of the fluid with the molecules of the flask or beaker or the molecules of the storage wall. \[Surface{\text{ }}tension = \dfrac{{force}}{{unitlength}}\]
\[Surface{\text{ }}tension = \dfrac{{{M^1}{L^1}{T^{ - 2}}}}{{{L^1}}} = M{L^0}{T^{ - 2}}\]
Hence, the surface tension is dimensionally represented as \[M{L^0}{T^{ - 2}}\]
Some examples of the surface tension are, the needle is floating on the surface of the water, the water droplets on the surface of the leaf look like small bubbles for some time, and the raindrop is circular due to surface tension.
Note: A physical quantity's dimension is more fundamental than some unit of scale used to express the quantity of that physical amount. Major uses of dimensional equations- to test a physical equation's correctness, to derive the relation between a physical phenomenon involving different physical quantities. Move from one control configuration to another.
Formula used:
\[Momentum = Force \times time\]
\[Surface\]\[tension = \dfrac{{force}}{{unitlength}}\]
Complete step-by-step solution:
Momentum is simply called as the mass in motion. If the object is moving it possesses momentum, because all the objects have mass. The product of its mass and the velocity by which the object is moving is called the Momentum of a body.
\[\begin{gathered}
Momentum = Force \times time \\
Force = mass \times acceleration \\
momentum = mass \times acceleration \times time \\
\end{gathered} \]
The dimensional formula of these basic quantities
The dimensional formula of mass is\[\left[ M \right]\].
The dimensional formula of acceleration is\[\left[ {L{T^{ - 2}}} \right]\].
The dimensional formula of time is\[\left[ T \right]\].
Substituting these dimensional formulas
\[I = Mass \times acceleration \times time\]
\[ \Rightarrow \left[ I \right] = \left[ M \right] \times \left[ {L{T^{ - 2}}} \right] \times \left[ T \right]\]
\[ \Rightarrow \left[ I \right] = \left[ {ML{T^{ - 1}}} \right]\]
Hence, the Impulse is dimensionally represented as \[\left[ {ML{T^{ - 1}}} \right]\]
Surface tension is defined as the tendency of the fluid surfaces to shrink into the minimum surface area possible. It can be determined by the difference in the interactions between the molecules of the fluid with the molecules of the flask or beaker or the molecules of the storage wall. \[Surface{\text{ }}tension = \dfrac{{force}}{{unitlength}}\]
\[Surface{\text{ }}tension = \dfrac{{{M^1}{L^1}{T^{ - 2}}}}{{{L^1}}} = M{L^0}{T^{ - 2}}\]
Hence, the surface tension is dimensionally represented as \[M{L^0}{T^{ - 2}}\]
Some examples of the surface tension are, the needle is floating on the surface of the water, the water droplets on the surface of the leaf look like small bubbles for some time, and the raindrop is circular due to surface tension.
Note: A physical quantity's dimension is more fundamental than some unit of scale used to express the quantity of that physical amount. Major uses of dimensional equations- to test a physical equation's correctness, to derive the relation between a physical phenomenon involving different physical quantities. Move from one control configuration to another.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE
