Answer
Verified
472.5k+ views
Hint: We will let the point on the x-axis be (x, 0) as the point is equidistant from (– 2, 5) and (2, – 3). So, we will calculate the distance of the point (x, 0) to each of the two points and then compare them to find the value of x. Once we get that, we have the point on the x-axis.
Complete step-by-step answer:
We are asked to find the point on the x-axis which is equidistant from the point (– 2, 5) and (2, – 3). We know that the point on the x-axis has its y – coordinate as 0. So, let (x, 0) be the point on the x-axis which is equidistant from (– 2, 5) and (2, – 3).
The distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by the distance formula \[D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\] as we are given that (x, 0) is equidistant from (– 2, 5) and (2, – 3).
Now we will find their distance and then compare them to find our value of x.
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
So, the distance between them will be given as,
\[{{D}_{1}}=\sqrt{{{\left( -2-x \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
We can write \[{{\left( -2-x \right)}^{2}}\] as
\[{{\left( -2-x \right)}^{2}}={{\left[ \left( - \right)\left( 2+x \right) \right]}^{2}}={{\left( 2+x \right)}^{2}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{1}}=\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}\]
Similarly, we can write, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right).\]
So, the distance between them will be given as,
\[{{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
As (x, 0) is equidistant from (– 2, 5) and (2, – 3), that means \[{{D}_{1}}={{D}_{2}}.\]
So, we get,
\[\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
Squaring both the sides, we get,
\[{{\left( 2+x \right)}^{2}}+{{5}^{2}}={{\left( 2-x \right)}^{2}}+{{3}^{2}}\]
Opening the square brackets to simplify, we get,
\[\Rightarrow {{x}^{2}}+4+4x+25={{x}^{2}}+4-4x+9\]
Cancelling the like terms, we get,
\[\Rightarrow 8x=9-25\]
\[\Rightarrow 8x=-16\]
Dividing both the sides by 8, we get,
\[\Rightarrow \dfrac{8x}{8}=\dfrac{-16}{8}\]
\[\Rightarrow x=-2\]
So, we get, x = – 2 which means that the point on the x-axis that is equidistant from (– 2, 5) and (2, – 3) is (– 2, 0).
Hence, the required answer is (– 2, 0).
Note: We can cross-check that our solution is correct or not by the following steps. We will find the distance between (– 2, 0) and the other two points and see if they are equal or not.
(i) Distance between (– 2, 0) and (– 2, 5).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
\[{{D}_{1}}=\sqrt{{{\left( -2-\left( -2 \right) \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{1}}=\sqrt{0+{{5}^{2}}}\]
\[\Rightarrow {{D}_{1}}=5\]
We get the distance between (– 2, 0) and (– 2, 5) as 5 units.
(ii) Distance between (– 2, 0) and (2, – 3).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right)\]
\[{{D}_{2}}=\sqrt{{{\left( 2-\left( -2 \right) \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{{{4}^{2}}+{{3}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{16+9}\]
\[\Rightarrow {{D}_{2}}=\sqrt{25}\]
\[\Rightarrow {{D}_{2}}=5\]
So again, we get the distance between (– 2, 0) and (– 2, 5) as 5 units.
So, our answer is correct.
Complete step-by-step answer:
We are asked to find the point on the x-axis which is equidistant from the point (– 2, 5) and (2, – 3). We know that the point on the x-axis has its y – coordinate as 0. So, let (x, 0) be the point on the x-axis which is equidistant from (– 2, 5) and (2, – 3).
The distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by the distance formula \[D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\] as we are given that (x, 0) is equidistant from (– 2, 5) and (2, – 3).
Now we will find their distance and then compare them to find our value of x.
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
So, the distance between them will be given as,
\[{{D}_{1}}=\sqrt{{{\left( -2-x \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
We can write \[{{\left( -2-x \right)}^{2}}\] as
\[{{\left( -2-x \right)}^{2}}={{\left[ \left( - \right)\left( 2+x \right) \right]}^{2}}={{\left( 2+x \right)}^{2}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{1}}=\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}\]
Similarly, we can write, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right).\]
So, the distance between them will be given as,
\[{{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
As (x, 0) is equidistant from (– 2, 5) and (2, – 3), that means \[{{D}_{1}}={{D}_{2}}.\]
So, we get,
\[\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
Squaring both the sides, we get,
\[{{\left( 2+x \right)}^{2}}+{{5}^{2}}={{\left( 2-x \right)}^{2}}+{{3}^{2}}\]
Opening the square brackets to simplify, we get,
\[\Rightarrow {{x}^{2}}+4+4x+25={{x}^{2}}+4-4x+9\]
Cancelling the like terms, we get,
\[\Rightarrow 8x=9-25\]
\[\Rightarrow 8x=-16\]
Dividing both the sides by 8, we get,
\[\Rightarrow \dfrac{8x}{8}=\dfrac{-16}{8}\]
\[\Rightarrow x=-2\]
So, we get, x = – 2 which means that the point on the x-axis that is equidistant from (– 2, 5) and (2, – 3) is (– 2, 0).
Hence, the required answer is (– 2, 0).
Note: We can cross-check that our solution is correct or not by the following steps. We will find the distance between (– 2, 0) and the other two points and see if they are equal or not.
(i) Distance between (– 2, 0) and (– 2, 5).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
\[{{D}_{1}}=\sqrt{{{\left( -2-\left( -2 \right) \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{1}}=\sqrt{0+{{5}^{2}}}\]
\[\Rightarrow {{D}_{1}}=5\]
We get the distance between (– 2, 0) and (– 2, 5) as 5 units.
(ii) Distance between (– 2, 0) and (2, – 3).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right)\]
\[{{D}_{2}}=\sqrt{{{\left( 2-\left( -2 \right) \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{{{4}^{2}}+{{3}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{16+9}\]
\[\Rightarrow {{D}_{2}}=\sqrt{25}\]
\[\Rightarrow {{D}_{2}}=5\]
So again, we get the distance between (– 2, 0) and (– 2, 5) as 5 units.
So, our answer is correct.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE