Answer
Verified
497.4k+ views
Hint: This is a question based on the section formula in 3D vector. The coordinates of two points P and Q in 3D are given and a line is formed by joining these points and we have to divide this line in 2:1 ratio. So, we will use section formula to find the coordinate of point R.
Complete step-by-step answer:
In the question, it is given that
Coordinates of point P is \[\mathop {\text{i}}\limits^ \wedge + 2\mathop {\text{j}}\limits^ \wedge - \mathop {\text{k}}\limits^ \wedge \] .
Coordinates of point Q is \[ - \mathop {\text{i}}\limits^ \wedge + \mathop {\text{j}}\limits^ \wedge + \mathop {\text{k}}\limits^ \wedge \] .
(I)
The figure for case when R divides PQ internally is:
We have assumed that the coordinate of point R is (X,Y,Z).
To find the coordinate of point R, we will use the section formula.
According to section formula, the coordinates of point R for the above case is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2} + {\text{n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2} + {\text{n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2} + {\text{n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
From the given question, we can write:
$
{{\text{x}}_2} = - 1,{{\text{x}}_1} = 1 \\
{{\text{y}}_2} = 1,{{\text{y}}_1} = 2 \\
{{\text{z}}_2} = 1,{{\text{z}}_1} = - 1 \\
{\text{and }}\dfrac{{{\text{PR}}}}{{{\text{RQ}}}} = \dfrac{{\text{m}}}{{\text{n}}} = \dfrac{2}{1}. \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1)}} + (1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 + 1}}{3} = \dfrac{{ - 1}}{3} \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) + (1 \times 2)}}{{2 + 1}} = \dfrac{4}{3} \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) + (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 - 1}}{3} = \dfrac{1}{3} \\
$
So, coordinates of point R is $\left( {\dfrac{{ - 1}}{3},\dfrac{4}{3},\dfrac{1}{3}} \right)$ for the case of internal division.
(II)
In this case it is given that Point R divides PQ externally.
The figure for this case is:
Section formula for external division is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2}{\text{ - n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2}{\text{ - n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2}{\text{ - n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1) - }}(1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 - 1}}{3} = \dfrac{{ - 3}}{3} = - 1 \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) - (1 \times 2)}}{{2 + 1}} = 0 \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) - (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 + 1}}{3} = \dfrac{3}{3} = 1 \\
$
So, coordinates of point R is $\left( { - 1,0,1} \right)$ for the case of external division.
Note: In this type of question, where 3D coordinates are given you should remember the section formula for 3D vector for both the cases i.e. external division and internal division. You should make a clear diagram for both the cases such that all the values are clearly visible.
Complete step-by-step answer:
In the question, it is given that
Coordinates of point P is \[\mathop {\text{i}}\limits^ \wedge + 2\mathop {\text{j}}\limits^ \wedge - \mathop {\text{k}}\limits^ \wedge \] .
Coordinates of point Q is \[ - \mathop {\text{i}}\limits^ \wedge + \mathop {\text{j}}\limits^ \wedge + \mathop {\text{k}}\limits^ \wedge \] .
(I)
The figure for case when R divides PQ internally is:
We have assumed that the coordinate of point R is (X,Y,Z).
To find the coordinate of point R, we will use the section formula.
According to section formula, the coordinates of point R for the above case is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2} + {\text{n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2} + {\text{n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2} + {\text{n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
From the given question, we can write:
$
{{\text{x}}_2} = - 1,{{\text{x}}_1} = 1 \\
{{\text{y}}_2} = 1,{{\text{y}}_1} = 2 \\
{{\text{z}}_2} = 1,{{\text{z}}_1} = - 1 \\
{\text{and }}\dfrac{{{\text{PR}}}}{{{\text{RQ}}}} = \dfrac{{\text{m}}}{{\text{n}}} = \dfrac{2}{1}. \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1)}} + (1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 + 1}}{3} = \dfrac{{ - 1}}{3} \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) + (1 \times 2)}}{{2 + 1}} = \dfrac{4}{3} \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) + (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 - 1}}{3} = \dfrac{1}{3} \\
$
So, coordinates of point R is $\left( {\dfrac{{ - 1}}{3},\dfrac{4}{3},\dfrac{1}{3}} \right)$ for the case of internal division.
(II)
In this case it is given that Point R divides PQ externally.
The figure for this case is:
Section formula for external division is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2}{\text{ - n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2}{\text{ - n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2}{\text{ - n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1) - }}(1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 - 1}}{3} = \dfrac{{ - 3}}{3} = - 1 \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) - (1 \times 2)}}{{2 + 1}} = 0 \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) - (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 + 1}}{3} = \dfrac{3}{3} = 1 \\
$
So, coordinates of point R is $\left( { - 1,0,1} \right)$ for the case of external division.
Note: In this type of question, where 3D coordinates are given you should remember the section formula for 3D vector for both the cases i.e. external division and internal division. You should make a clear diagram for both the cases such that all the values are clearly visible.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE