Answer
Verified
489.9k+ views
Hint: The range of \[{\tan ^{ - 1}}\theta \] is between \[\left. {\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right.} \right)\]. From the trigonometric table find the value of\[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\]. Now substitute this back into our given expression and simplify it to get the principal value.
Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point. The principal value of \[{\tan ^{ - 1}}\theta \]
The principal value of \[{\tan ^{ - 1}}\theta \] branches to,
\[{\tan ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Hence the principal value of the given function will be between the range\[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] .
Now we have been given the function, \[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].
Let us first find the value of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] from the above expression. By using the trigonometric table we can find the tangent function related to \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] . Let us draw the trigonometric table to make the identification of the function easier.
From the table we get that, \[\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\].
In case of an inverse tangent function, \[{\tan ^{ - 1}}( - \theta ) = - \theta \]. Hence we get,
\[\tan \left( { - \dfrac{\pi }{6}} \right) = \left( { - \dfrac{1}{{\sqrt 3 }}} \right)\]
Now let us substitute \[\tan \left( { - \dfrac{\pi }{6}} \right)\]in the place of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].Thus we can change the given expression as,
\[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right)\]
Now let us simplify the above expression to get the principal value.
\[
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) \ \\
{\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
\]
Thus we got the principal value of the given inverse tangent function as, \[\left( { - \dfrac{\pi }{6}} \right)\].
\[\therefore {\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right)\].
Note: To solve a question like these you should be familiar with the domain and range of the sine functions as well as the domain and range of the inverse sine functions. For us the range of inverse tangent function is \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and the domain of inverse function of tangent is \[\left( { - \infty ,\infty } \right)\]. Students should remember the important trigonometric ratios and standard angles to solve these types of questions.
Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point. The principal value of \[{\tan ^{ - 1}}\theta \]
The principal value of \[{\tan ^{ - 1}}\theta \] branches to,
\[{\tan ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Hence the principal value of the given function will be between the range\[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] .
Now we have been given the function, \[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].
Let us first find the value of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] from the above expression. By using the trigonometric table we can find the tangent function related to \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] . Let us draw the trigonometric table to make the identification of the function easier.
From the table we get that, \[\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\].
In case of an inverse tangent function, \[{\tan ^{ - 1}}( - \theta ) = - \theta \]. Hence we get,
\[\tan \left( { - \dfrac{\pi }{6}} \right) = \left( { - \dfrac{1}{{\sqrt 3 }}} \right)\]
Now let us substitute \[\tan \left( { - \dfrac{\pi }{6}} \right)\]in the place of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].Thus we can change the given expression as,
\[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right)\]
Now let us simplify the above expression to get the principal value.
\[
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) \ \\
{\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
\]
Thus we got the principal value of the given inverse tangent function as, \[\left( { - \dfrac{\pi }{6}} \right)\].
\[\therefore {\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right)\].
Note: To solve a question like these you should be familiar with the domain and range of the sine functions as well as the domain and range of the inverse sine functions. For us the range of inverse tangent function is \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and the domain of inverse function of tangent is \[\left( { - \infty ,\infty } \right)\]. Students should remember the important trigonometric ratios and standard angles to solve these types of questions.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE