
Find the principal value of \[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].
Answer
609.3k+ views
Hint: The range of \[{\tan ^{ - 1}}\theta \] is between \[\left. {\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right.} \right)\]. From the trigonometric table find the value of\[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\]. Now substitute this back into our given expression and simplify it to get the principal value.
Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point. The principal value of \[{\tan ^{ - 1}}\theta \]
The principal value of \[{\tan ^{ - 1}}\theta \] branches to,
\[{\tan ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Hence the principal value of the given function will be between the range\[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] .
Now we have been given the function, \[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].
Let us first find the value of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] from the above expression. By using the trigonometric table we can find the tangent function related to \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] . Let us draw the trigonometric table to make the identification of the function easier.
From the table we get that, \[\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\].
In case of an inverse tangent function, \[{\tan ^{ - 1}}( - \theta ) = - \theta \]. Hence we get,
\[\tan \left( { - \dfrac{\pi }{6}} \right) = \left( { - \dfrac{1}{{\sqrt 3 }}} \right)\]
Now let us substitute \[\tan \left( { - \dfrac{\pi }{6}} \right)\]in the place of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].Thus we can change the given expression as,
\[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right)\]
Now let us simplify the above expression to get the principal value.
\[
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) \ \\
{\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
\]
Thus we got the principal value of the given inverse tangent function as, \[\left( { - \dfrac{\pi }{6}} \right)\].
\[\therefore {\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right)\].
Note: To solve a question like these you should be familiar with the domain and range of the sine functions as well as the domain and range of the inverse sine functions. For us the range of inverse tangent function is \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and the domain of inverse function of tangent is \[\left( { - \infty ,\infty } \right)\]. Students should remember the important trigonometric ratios and standard angles to solve these types of questions.
Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point. The principal value of \[{\tan ^{ - 1}}\theta \]
The principal value of \[{\tan ^{ - 1}}\theta \] branches to,
\[{\tan ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Hence the principal value of the given function will be between the range\[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] .
Now we have been given the function, \[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].
Let us first find the value of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] from the above expression. By using the trigonometric table we can find the tangent function related to \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\] . Let us draw the trigonometric table to make the identification of the function easier.
From the table we get that, \[\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\].
In case of an inverse tangent function, \[{\tan ^{ - 1}}( - \theta ) = - \theta \]. Hence we get,
\[\tan \left( { - \dfrac{\pi }{6}} \right) = \left( { - \dfrac{1}{{\sqrt 3 }}} \right)\]
Now let us substitute \[\tan \left( { - \dfrac{\pi }{6}} \right)\]in the place of \[\left( { - \dfrac{1}{{\sqrt 3 }}} \right)\].Thus we can change the given expression as,
\[{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right)\]
Now let us simplify the above expression to get the principal value.
\[
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) \ \\
{\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
{\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right) \ \\
\]
Thus we got the principal value of the given inverse tangent function as, \[\left( { - \dfrac{\pi }{6}} \right)\].
\[\therefore {\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) = \left( { - \dfrac{\pi }{6}} \right)\].
Note: To solve a question like these you should be familiar with the domain and range of the sine functions as well as the domain and range of the inverse sine functions. For us the range of inverse tangent function is \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and the domain of inverse function of tangent is \[\left( { - \infty ,\infty } \right)\]. Students should remember the important trigonometric ratios and standard angles to solve these types of questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

