Answer
Verified
468.3k+ views
Hint: We start solving this problem by finding the additive inverse of the obtained number after multiplying given numbers. Then we find the multiplicative inverse of the other given number and then multiply obtained results to obtain the final answer.
Complete step-by-step answer:
Additive inverse of a number is a real number which sums up to the given number and gives zero.
Let us consider the definition of additive inverse.
Let a and b be two real numbers. Then we say b is the additive inverse of a, if
$ a+b=0 $ .
Let us consider the given number $ \dfrac{-2}{7}\times \dfrac{4}{5} $ as a.
Now, we need to find the additive inverse of a that is b.
Then, by the definition above, we get
\[\begin{align}
& \Rightarrow \left( \dfrac{-2}{7}\times \dfrac{4}{5} \right)+b=0 \\
& \Rightarrow \left( \dfrac{-8}{35} \right)+b=0 \\
& \Rightarrow b=-\left( \dfrac{-8}{35} \right) \\
& \Rightarrow b=\dfrac{8}{35} \\
\end{align}\]
So, the additive inverse of $ \dfrac{-2}{7}\times \dfrac{4}{5} $ is \[\dfrac{8}{35}\].
Now, let us consider the definition of Multiplicative Inverse.
Multiplicative inverse of a number is nothing but the reciprocal of the number, i.e., the multiplicative inverse of x is $ \dfrac{1}{x} $ .
We need to find the multiplicative inverse of $ \dfrac{13}{21} $ .
So, from the definition above, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{\dfrac{13}{21}} \\
& \Rightarrow \dfrac{21}{13} \\
\end{align}\]
Now, we need to multiply the both obtained results to get the required result.
So, multiplying them we get
\[\Rightarrow \dfrac{8}{35}\times \dfrac{21}{13}\]
As both 21, 35 are divisible by 7 we reduce them. Then we get
\[\begin{align}
& \Rightarrow \dfrac{8}{5}\times \dfrac{3}{13} \\
& \Rightarrow \dfrac{24}{65} \\
\end{align}\]
Therefore, the product of additive inverse $ \dfrac{-2}{7}\times \dfrac{4}{5} $ of and multiplicative inverse of $ \dfrac{13}{21} $ is \[\dfrac{24}{65}\].
Hence the answer is \[\dfrac{24}{65}\].
Note: While finding the additive inverse of $ \dfrac{-2}{7}\times \dfrac{4}{5} $ , there is a chance of making mistake by finding additive inverse for both the numbers and multiply them like
Additive inverse of $ \dfrac{-2}{7} $ is $ \dfrac{-2}{7}+x=0\Rightarrow x=-\left( \dfrac{-2}{7} \right)=\dfrac{2}{7} $ .
Additive inverse of $ \dfrac{4}{5} $ is $ \dfrac{4}{5}+x=0\Rightarrow x=-\left( \dfrac{4}{5} \right)=-\dfrac{4}{5} $ .
Complete step-by-step answer:
Additive inverse of a number is a real number which sums up to the given number and gives zero.
Let us consider the definition of additive inverse.
Let a and b be two real numbers. Then we say b is the additive inverse of a, if
$ a+b=0 $ .
Let us consider the given number $ \dfrac{-2}{7}\times \dfrac{4}{5} $ as a.
Now, we need to find the additive inverse of a that is b.
Then, by the definition above, we get
\[\begin{align}
& \Rightarrow \left( \dfrac{-2}{7}\times \dfrac{4}{5} \right)+b=0 \\
& \Rightarrow \left( \dfrac{-8}{35} \right)+b=0 \\
& \Rightarrow b=-\left( \dfrac{-8}{35} \right) \\
& \Rightarrow b=\dfrac{8}{35} \\
\end{align}\]
So, the additive inverse of $ \dfrac{-2}{7}\times \dfrac{4}{5} $ is \[\dfrac{8}{35}\].
Now, let us consider the definition of Multiplicative Inverse.
Multiplicative inverse of a number is nothing but the reciprocal of the number, i.e., the multiplicative inverse of x is $ \dfrac{1}{x} $ .
We need to find the multiplicative inverse of $ \dfrac{13}{21} $ .
So, from the definition above, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{\dfrac{13}{21}} \\
& \Rightarrow \dfrac{21}{13} \\
\end{align}\]
Now, we need to multiply the both obtained results to get the required result.
So, multiplying them we get
\[\Rightarrow \dfrac{8}{35}\times \dfrac{21}{13}\]
As both 21, 35 are divisible by 7 we reduce them. Then we get
\[\begin{align}
& \Rightarrow \dfrac{8}{5}\times \dfrac{3}{13} \\
& \Rightarrow \dfrac{24}{65} \\
\end{align}\]
Therefore, the product of additive inverse $ \dfrac{-2}{7}\times \dfrac{4}{5} $ of and multiplicative inverse of $ \dfrac{13}{21} $ is \[\dfrac{24}{65}\].
Hence the answer is \[\dfrac{24}{65}\].
Note: While finding the additive inverse of $ \dfrac{-2}{7}\times \dfrac{4}{5} $ , there is a chance of making mistake by finding additive inverse for both the numbers and multiply them like
Additive inverse of $ \dfrac{-2}{7} $ is $ \dfrac{-2}{7}+x=0\Rightarrow x=-\left( \dfrac{-2}{7} \right)=\dfrac{2}{7} $ .
Additive inverse of $ \dfrac{4}{5} $ is $ \dfrac{4}{5}+x=0\Rightarrow x=-\left( \dfrac{4}{5} \right)=-\dfrac{4}{5} $ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE