Answer
Verified
429.9k+ views
Hint: In the problem we need to multiply the given two terms. Here we can follow the FOIL rule to multiply the given terms. So, we will first multiply the individual terms according to the FOIL rule which is nothing but First, Outside, Inner, Last terms. After multiplying the term individually, we will add all the calculated values to get the required result.
Complete step by step solution:
Given that, $\left( 2x+1 \right)\left( x+3 \right)$.
First terms in the given equation are $2x$, $x$. Multiplying the both the terms, then we will get
$2x\times x=2{{x}^{2}}...\left( \text{i} \right)$
Outside terms in the given equation are $2x$, $3$. Multiplying the both the terms, then we will get
$2x\times 3=6x...\left( \text{ii} \right)$
Inner terms in the given equation are $1$, $x$. Multiplying the both the terms, then we will get
$1\times x=x....\left( \text{iii} \right)$
Last terms in the given equation are $1$, $3$. Multiplying the both the terms, then we will get
$1\times 3=3....\left( \text{iv} \right)$
Now the product of the given equation is the algebraic sum of the products obtained by the FOIL rule. From equations $\left( \text{i} \right)$, $\left( \text{ii} \right)$, $\left( \text{iii} \right)$, $\left( \text{iv} \right)$ we can write
$\left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3$
Simplifying the above equation, then we will get
$\Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3$
Hence the product of the equation $\left( 2x+1 \right)\left( x+3 \right)$ is $2{{x}^{2}}+7x+3$.
Note: We can directly multiply the two terms and use the distribution law of multiplication over the addition and subtraction, then we will get the required result.
Given $\left( 2x+1 \right)\left( x+3 \right)$.
Multiplying each term individually, then we will get
$\left( 2x+1 \right)\left( x+3 \right)=2x\left( x+3 \right)+1\left( x+3 \right)$
Using the distribution law of multiplication over the subtraction, then we will get
$\begin{align}
& \left( 2x+1 \right)\left( x+3 \right)=2x\times x+2x\times 3+1\times x+1\times 3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3 \\
\end{align}$
From both the methods we got the same result.
Complete step by step solution:
Given that, $\left( 2x+1 \right)\left( x+3 \right)$.
First terms in the given equation are $2x$, $x$. Multiplying the both the terms, then we will get
$2x\times x=2{{x}^{2}}...\left( \text{i} \right)$
Outside terms in the given equation are $2x$, $3$. Multiplying the both the terms, then we will get
$2x\times 3=6x...\left( \text{ii} \right)$
Inner terms in the given equation are $1$, $x$. Multiplying the both the terms, then we will get
$1\times x=x....\left( \text{iii} \right)$
Last terms in the given equation are $1$, $3$. Multiplying the both the terms, then we will get
$1\times 3=3....\left( \text{iv} \right)$
Now the product of the given equation is the algebraic sum of the products obtained by the FOIL rule. From equations $\left( \text{i} \right)$, $\left( \text{ii} \right)$, $\left( \text{iii} \right)$, $\left( \text{iv} \right)$ we can write
$\left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3$
Simplifying the above equation, then we will get
$\Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3$
Hence the product of the equation $\left( 2x+1 \right)\left( x+3 \right)$ is $2{{x}^{2}}+7x+3$.
Note: We can directly multiply the two terms and use the distribution law of multiplication over the addition and subtraction, then we will get the required result.
Given $\left( 2x+1 \right)\left( x+3 \right)$.
Multiplying each term individually, then we will get
$\left( 2x+1 \right)\left( x+3 \right)=2x\left( x+3 \right)+1\left( x+3 \right)$
Using the distribution law of multiplication over the subtraction, then we will get
$\begin{align}
& \left( 2x+1 \right)\left( x+3 \right)=2x\times x+2x\times 3+1\times x+1\times 3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+6x+x+3 \\
& \Rightarrow \left( 2x+1 \right)\left( x+3 \right)=2{{x}^{2}}+7x+3 \\
\end{align}$
From both the methods we got the same result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE