Answer
Verified
498.6k+ views
Hint: At first try to analyse the expression then use distributive law which states that $a\times \left( b+c \right)=a\times b+a\times c$ and try to define and give an example and then use to get the results instead of doing the products.
Complete step-by-step solution:
In the question we have to solve the expression $625\times \left( -35 \right)+\left( -625 \right)\times 65$ using suitable properties.
Now to find the value of the expression we will use the distributive property which lets one multiply a sum by multiplying each addend separately and then add the products. It is represented as$a\times \left( b+c \right)=a\times b+a\times c$.
Let’s take an example of the distributive which is as follows,
$3(2+4)=3\times 2+3\times 4$
In LHS, $3(2+4)$ is equal to \[3\times 6\] which becomes \[18\]. So here LHS is \[18\].
In RHS, $3\times 2+3\times 4$ can be written as $6+12$ which equals $18$. So here RHS is $18$.
Hence LHS=RHS so the property satisfies and hence we can use it in expression to solve it.
Now in the expression we are given that,
$625\times \left( -35 \right)+\left( -625 \right)\times 65\ldots \ldots (1)$
which can be expressed as,
$625\times \left( -35 \right)+625\times \left( -65 \right)\ldots \ldots (2)$
As we know $\left( -a \right)\times b=a\times \left( -b \right)$. Hence we can write expressions on (1) and (2).
So now we will use the distributive property which is
$a\times \left( b+c \right)=a\times b+a\times c$
where we will put a = 625, b = -35, c = -65 in expression (2) to get,
$\begin{align}
& 625\times \left( -35 \right)+625\times \left( -65 \right) \\
& =625\times \left( \left( -35 \right)+\left( -65 \right) \right) \\
& =625\times \left( -100 \right) \\
& =-62500 \\
\end{align}$
So the value of expression by using the distributive law is -62500.
Hence, the answer is -62500.
Note: In these types of problems instead of thinking they directly find the value of the two products differently and add them up. The distributive law or any other laws such as associative where $a\times \left( b+c \right)=a\times b+a\times c$ is made to ease down calculations instead doing the hectic work. Hence the student shall learn all the laws by heart.
Complete step-by-step solution:
In the question we have to solve the expression $625\times \left( -35 \right)+\left( -625 \right)\times 65$ using suitable properties.
Now to find the value of the expression we will use the distributive property which lets one multiply a sum by multiplying each addend separately and then add the products. It is represented as$a\times \left( b+c \right)=a\times b+a\times c$.
Let’s take an example of the distributive which is as follows,
$3(2+4)=3\times 2+3\times 4$
In LHS, $3(2+4)$ is equal to \[3\times 6\] which becomes \[18\]. So here LHS is \[18\].
In RHS, $3\times 2+3\times 4$ can be written as $6+12$ which equals $18$. So here RHS is $18$.
Hence LHS=RHS so the property satisfies and hence we can use it in expression to solve it.
Now in the expression we are given that,
$625\times \left( -35 \right)+\left( -625 \right)\times 65\ldots \ldots (1)$
which can be expressed as,
$625\times \left( -35 \right)+625\times \left( -65 \right)\ldots \ldots (2)$
As we know $\left( -a \right)\times b=a\times \left( -b \right)$. Hence we can write expressions on (1) and (2).
So now we will use the distributive property which is
$a\times \left( b+c \right)=a\times b+a\times c$
where we will put a = 625, b = -35, c = -65 in expression (2) to get,
$\begin{align}
& 625\times \left( -35 \right)+625\times \left( -65 \right) \\
& =625\times \left( \left( -35 \right)+\left( -65 \right) \right) \\
& =625\times \left( -100 \right) \\
& =-62500 \\
\end{align}$
So the value of expression by using the distributive law is -62500.
Hence, the answer is -62500.
Note: In these types of problems instead of thinking they directly find the value of the two products differently and add them up. The distributive law or any other laws such as associative where $a\times \left( b+c \right)=a\times b+a\times c$ is made to ease down calculations instead doing the hectic work. Hence the student shall learn all the laws by heart.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE