Find the ${{(r+1)}^{th}}$ term in the following expansion: ${{\left( a+bx \right)}^{-1}}$ .
Answer
Verified
504.3k+ views
Hint: First change the expression ${{\left( a+bx \right)}^{-1}}$ as $\dfrac{1}{a}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$ and find its ${{\left( r+1 \right)}^{\text{th}}}$ term using the formula,
${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ to get what is asked in the question.
Complete step-by-step answer:
We have to find the ${{\left( r+1 \right)}^{\text{th}}}$ term of the expression \[{{\left( a+bx \right)}^{-1}}\].
We have to first write or mention the general term that is the ${{\left( r+1 \right)}^{\text{th}}}$ term of ${{\left( 1+x \right)}^{n}}$ which is given by the formula,
${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}...........\left( i \right)$
Now let’s consider the expansion of ${{\left( a+bx \right)}^{-1}},$
Taking ‘a’ out of the bracket, we get
${{\left( a+bx \right)}^{-1}}={{\left\{ a\left( 1+\dfrac{b}{a}x \right) \right\}}^{-1}}$
Now we know the formula, ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$ , so the above equation can be written as,
${{\left( a+bx \right)}^{-1}}={{a}^{-1}}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$
So now it can be written as,
${{\left( a+bx \right)}^{-1}}=\dfrac{1}{a}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$
Now we have to find ${{T}_{r+1}}$ of the expression $\dfrac{1}{a}{{\left( 1+\dfrac{b}{a} \right)}^{-1}}$ which is,
${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -1-1 \right)\left( -1-2 \right).........\left( -1-r+1 \right)}{r!} \right\}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}}$
${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -2 \right)\left( -3 \right)......\left( -r \right)}{r!}{{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$
In the expression (-1)(-2)(-3)…………(-r) can be written as ${{\left( -1 \right)}^{r}}.r!$, so the above equation becomes,
${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{{{\left( -1 \right)}^{r}}r!}{r!}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$
Now combining the ‘a’ term, we get
${{T}_{r+1}}={{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}$
Hence the ${{(r+1)}^{th}}$ term in the expansion of ${{\left( a+bx \right)}^{-1}}$ is ${{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}.$
Note: Students must be careful while dealing with expansion related or identical to ${{\left( 1+x \right)}^{-n}}$ because in this the general formula of ${{T}_{r+1}}$ is expressed as,
${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$
Irrespective of what value n is. One should also be careful about its calculation mistakes as the solution is too long.
Students generally make mistakes by applying the general formula of ${{T}_{r+1}}$ directly in${{\left( a+bx \right)}^{-1}}$ . They will get wrong answer as ${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ is the general formula for rth in expansion of ${{\left( 1+x \right)}^{-n}}$, that means one of the term should be 1.
${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ to get what is asked in the question.
Complete step-by-step answer:
We have to find the ${{\left( r+1 \right)}^{\text{th}}}$ term of the expression \[{{\left( a+bx \right)}^{-1}}\].
We have to first write or mention the general term that is the ${{\left( r+1 \right)}^{\text{th}}}$ term of ${{\left( 1+x \right)}^{n}}$ which is given by the formula,
${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}...........\left( i \right)$
Now let’s consider the expansion of ${{\left( a+bx \right)}^{-1}},$
Taking ‘a’ out of the bracket, we get
${{\left( a+bx \right)}^{-1}}={{\left\{ a\left( 1+\dfrac{b}{a}x \right) \right\}}^{-1}}$
Now we know the formula, ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$ , so the above equation can be written as,
${{\left( a+bx \right)}^{-1}}={{a}^{-1}}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$
So now it can be written as,
${{\left( a+bx \right)}^{-1}}=\dfrac{1}{a}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$
Now we have to find ${{T}_{r+1}}$ of the expression $\dfrac{1}{a}{{\left( 1+\dfrac{b}{a} \right)}^{-1}}$ which is,
${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -1-1 \right)\left( -1-2 \right).........\left( -1-r+1 \right)}{r!} \right\}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}}$
${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -2 \right)\left( -3 \right)......\left( -r \right)}{r!}{{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$
In the expression (-1)(-2)(-3)…………(-r) can be written as ${{\left( -1 \right)}^{r}}.r!$, so the above equation becomes,
${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{{{\left( -1 \right)}^{r}}r!}{r!}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$
Now combining the ‘a’ term, we get
${{T}_{r+1}}={{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}$
Hence the ${{(r+1)}^{th}}$ term in the expansion of ${{\left( a+bx \right)}^{-1}}$ is ${{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}.$
Note: Students must be careful while dealing with expansion related or identical to ${{\left( 1+x \right)}^{-n}}$ because in this the general formula of ${{T}_{r+1}}$ is expressed as,
${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$
Irrespective of what value n is. One should also be careful about its calculation mistakes as the solution is too long.
Students generally make mistakes by applying the general formula of ${{T}_{r+1}}$ directly in${{\left( a+bx \right)}^{-1}}$ . They will get wrong answer as ${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ is the general formula for rth in expansion of ${{\left( 1+x \right)}^{-n}}$, that means one of the term should be 1.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE