Answer
Verified
497.1k+ views
Hint – In this question we have to deal with terms like duplicate, sub duplicate and we need to take out ratio compounded of ratio and duplicate. Sub duplicate ratio and ratio and duplicate ratio and ratio, so use the basic definition of duplicate, sub-duplicate directly along with the basic formula. Implementation of these two will get you to the answer.
Complete step-by-step answer:
Let us assume two ratios $\left( {x:y} \right){\text{ & }}\left( {p:q} \right)$
Duplicate of the ratio $\left( {p:q} \right)$ is $\left( {{p^2}:{q^2}} \right)$
So, the compound of $\left( {x:y} \right)$ and duplicate of $\left( {p:q} \right)$is $ \Rightarrow \left( {x \times {p^2}} \right):\left( {y \times {q^2}} \right)$
Now as we know that the sub duplicate of the ratio $\left( {p:q} \right)$ is $\left( {\sqrt p :\sqrt q } \right)$
So, the compound of $\left( {x:y} \right)$ and sub duplicate of $\left( {p:q} \right)$ is $ \Rightarrow \left( {x \times \sqrt p } \right):\left( {y \times \sqrt q } \right)$
So, use these properties in the given question we have,
$\left( 1 \right)$ Duplicate of the ratio $\left( {9{b^2}:ab} \right)$ is $\left( {81{b^4}:{a^2}{b^2}} \right)$
So, the compound of $\left( {2a:3b} \right)$ and duplicate of $\left( {9{b^2}:ab} \right)$is $ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$
Now simplify the above ratio we have,
$ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$
Divide by $3a{b^3}$ we have,
$ = 54b:a$
$\left( 2 \right)$ The sub duplicate of the ratio $\left( {64:9} \right)$ is \[\left( {\sqrt {64} :\sqrt 9 } \right) = \left( {8:3} \right)\]
So, the compound of $\left( {27:56} \right)$ and sub duplicate of $\left( {8:3} \right)$is $ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right)$
Now divide by 24 we have
$ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right) = 9:7$
$\left( 3 \right)$ Duplicate of the ratio $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$ is $\left( {\dfrac{{4{a^2}}}{{{b^2}}}:\dfrac{{c{a^4}}}{{{b^4}}}} \right)$
So, the compound of $\left( {3ax:2by} \right)$ and duplicate of $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$is $ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right)$
Now simplify the above ratio we have,
$ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right) = \left( {12x \times \dfrac{{{a^3}}}{{{b^2}}}} \right):\left( {2y \times \dfrac{{c{a^4}}}{{{b^3}}}} \right)$
Divide by $\dfrac{{2{a^3}}}{{{b^2}}}$ we have,
$ = 6x:\dfrac{{yac}}{b} = 6bx:acy$
So, these are the required answers.
Note – Whenever we face such types of problems the key point that we need to have in our mind is that these all are basic definitions along with direct based questions. So having a good understanding of this direct concept helps you solve problems of this kind.
Complete step-by-step answer:
Let us assume two ratios $\left( {x:y} \right){\text{ & }}\left( {p:q} \right)$
Duplicate of the ratio $\left( {p:q} \right)$ is $\left( {{p^2}:{q^2}} \right)$
So, the compound of $\left( {x:y} \right)$ and duplicate of $\left( {p:q} \right)$is $ \Rightarrow \left( {x \times {p^2}} \right):\left( {y \times {q^2}} \right)$
Now as we know that the sub duplicate of the ratio $\left( {p:q} \right)$ is $\left( {\sqrt p :\sqrt q } \right)$
So, the compound of $\left( {x:y} \right)$ and sub duplicate of $\left( {p:q} \right)$ is $ \Rightarrow \left( {x \times \sqrt p } \right):\left( {y \times \sqrt q } \right)$
So, use these properties in the given question we have,
$\left( 1 \right)$ Duplicate of the ratio $\left( {9{b^2}:ab} \right)$ is $\left( {81{b^4}:{a^2}{b^2}} \right)$
So, the compound of $\left( {2a:3b} \right)$ and duplicate of $\left( {9{b^2}:ab} \right)$is $ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$
Now simplify the above ratio we have,
$ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$
Divide by $3a{b^3}$ we have,
$ = 54b:a$
$\left( 2 \right)$ The sub duplicate of the ratio $\left( {64:9} \right)$ is \[\left( {\sqrt {64} :\sqrt 9 } \right) = \left( {8:3} \right)\]
So, the compound of $\left( {27:56} \right)$ and sub duplicate of $\left( {8:3} \right)$is $ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right)$
Now divide by 24 we have
$ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right) = 9:7$
$\left( 3 \right)$ Duplicate of the ratio $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$ is $\left( {\dfrac{{4{a^2}}}{{{b^2}}}:\dfrac{{c{a^4}}}{{{b^4}}}} \right)$
So, the compound of $\left( {3ax:2by} \right)$ and duplicate of $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$is $ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right)$
Now simplify the above ratio we have,
$ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right) = \left( {12x \times \dfrac{{{a^3}}}{{{b^2}}}} \right):\left( {2y \times \dfrac{{c{a^4}}}{{{b^3}}}} \right)$
Divide by $\dfrac{{2{a^3}}}{{{b^2}}}$ we have,
$ = 6x:\dfrac{{yac}}{b} = 6bx:acy$
So, these are the required answers.
Note – Whenever we face such types of problems the key point that we need to have in our mind is that these all are basic definitions along with direct based questions. So having a good understanding of this direct concept helps you solve problems of this kind.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE