
Find the ratio in which the point (1, -k) divides the line joining the points (-3, 10) and (6, -8). And find the value of k.
Answer
582k+ views
Hint: In this particular question use the concept of section formula if three points are collinear (i.e. they are in same line), so a point (x, y) divides the line joining the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ internally in the ratio (m : n) then the coordinates of the point (x, y) is given as, $\left( {x,y} \right) = \left( {\dfrac{{m{x_2} + n{x_1}\,}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ so use this concept to reach the solution of the question.
Complete step by step answer:
Let, A = (-3, 10) = $\left( {{x_1},{y_1}} \right)$
B = (6, -8) = $\left( {{x_2},{y_2}} \right)$
Now, let the point (-1, k) divides the line AB in the ratio (m : n)
Let, C = (-1, k) = (x, y)
Now according to section formula if a point (x, y) divides the line joining the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ internally in the ratio (m : n) then the coordinates of the point (x, y) is given as,
$ \Rightarrow \left( {x,y} \right) = \left( {\dfrac{{m{x_2} + n{x_1}\,}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$
Now substitute all the values we have,
$ \Rightarrow \left( { - 1,k} \right) = \left( {\dfrac{{m\left( 6 \right) + n\left( { - 3} \right)\,}}{{m + n}},\dfrac{{m\left( { - 8} \right) + n\left( {10} \right)}}{{m + n}}} \right)$
Now simplify we have,
$ \Rightarrow \left( { - 1,k} \right) = \left( {\dfrac{{6m - 3n\,}}{{m + n}},\dfrac{{ - 8m + 10n}}{{m + n}}} \right)$
Now on comparing we have,
$ \Rightarrow - 1 = \dfrac{{6m - 3n\,}}{{m + n}}$................. (1)
And
$k = \dfrac{{ - 8m + 10n}}{{m + n}}$.............. (2)
Now first simplify equation (1) we have,
$ \Rightarrow - 1 = \dfrac{{6m - 3n\,}}{{m + n}}$
$ \Rightarrow - m - n = 6m - 3n\,$
$ \Rightarrow - m - 6m = n - 3n\,$
$ \Rightarrow - 7m = - 2n\,$
$ \Rightarrow \dfrac{m}{n} = \dfrac{2}{7}$................. (3)
So this is the required ratio in which the point (1, -k) divides the line joining the points (-3, 10) and (6, -8).
Now from equation (2) we have,
$ \Rightarrow k = \dfrac{{ - 8m + 10n}}{{m + n}}$
Now divide by (n) in numerator and denominator of the above equation we have,
$ \Rightarrow k = \dfrac{{ - 8\left( {\dfrac{m}{n}} \right) + 10}}{{\left( {\dfrac{m}{n}} \right) + 1}}$
Now from equation (3) we have,
$ \Rightarrow k = \dfrac{{ - 8\left( {\dfrac{2}{7}} \right) + 10}}{{\left( {\dfrac{2}{7}} \right) + 1}}$
Now simplify this we have,
$ \Rightarrow k = \dfrac{{ - 8\left( {\dfrac{2}{7}} \right) + 10}}{{\left( {\dfrac{2}{7}} \right) + 1}} = \dfrac{{ - 16 + 70}}{{2 + 7}} = \dfrac{{54}}{9} = 6$
So the required value of k is 6.
Note: Whenever we face such types of questions the key concept we have to remember is the section formula which is stated above, then simply substitute the values in this formula and simplify as above we will get the required ratio and the value of k, which is our required answer.
Complete step by step answer:
Let, A = (-3, 10) = $\left( {{x_1},{y_1}} \right)$
B = (6, -8) = $\left( {{x_2},{y_2}} \right)$
Now, let the point (-1, k) divides the line AB in the ratio (m : n)
Let, C = (-1, k) = (x, y)
Now according to section formula if a point (x, y) divides the line joining the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ internally in the ratio (m : n) then the coordinates of the point (x, y) is given as,
$ \Rightarrow \left( {x,y} \right) = \left( {\dfrac{{m{x_2} + n{x_1}\,}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$
Now substitute all the values we have,
$ \Rightarrow \left( { - 1,k} \right) = \left( {\dfrac{{m\left( 6 \right) + n\left( { - 3} \right)\,}}{{m + n}},\dfrac{{m\left( { - 8} \right) + n\left( {10} \right)}}{{m + n}}} \right)$
Now simplify we have,
$ \Rightarrow \left( { - 1,k} \right) = \left( {\dfrac{{6m - 3n\,}}{{m + n}},\dfrac{{ - 8m + 10n}}{{m + n}}} \right)$
Now on comparing we have,
$ \Rightarrow - 1 = \dfrac{{6m - 3n\,}}{{m + n}}$................. (1)
And
$k = \dfrac{{ - 8m + 10n}}{{m + n}}$.............. (2)
Now first simplify equation (1) we have,
$ \Rightarrow - 1 = \dfrac{{6m - 3n\,}}{{m + n}}$
$ \Rightarrow - m - n = 6m - 3n\,$
$ \Rightarrow - m - 6m = n - 3n\,$
$ \Rightarrow - 7m = - 2n\,$
$ \Rightarrow \dfrac{m}{n} = \dfrac{2}{7}$................. (3)
So this is the required ratio in which the point (1, -k) divides the line joining the points (-3, 10) and (6, -8).
Now from equation (2) we have,
$ \Rightarrow k = \dfrac{{ - 8m + 10n}}{{m + n}}$
Now divide by (n) in numerator and denominator of the above equation we have,
$ \Rightarrow k = \dfrac{{ - 8\left( {\dfrac{m}{n}} \right) + 10}}{{\left( {\dfrac{m}{n}} \right) + 1}}$
Now from equation (3) we have,
$ \Rightarrow k = \dfrac{{ - 8\left( {\dfrac{2}{7}} \right) + 10}}{{\left( {\dfrac{2}{7}} \right) + 1}}$
Now simplify this we have,
$ \Rightarrow k = \dfrac{{ - 8\left( {\dfrac{2}{7}} \right) + 10}}{{\left( {\dfrac{2}{7}} \right) + 1}} = \dfrac{{ - 16 + 70}}{{2 + 7}} = \dfrac{{54}}{9} = 6$
So the required value of k is 6.
Note: Whenever we face such types of questions the key concept we have to remember is the section formula which is stated above, then simply substitute the values in this formula and simplify as above we will get the required ratio and the value of k, which is our required answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

