Answer
Verified
471k+ views
Hint: In this question section formula will be used which tell us the coordinates of point which divides a given line segment into two parts in ratio \[m:n\]
\[x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\]
\[y = \dfrac{{x{y_2} + n{y_1}}}{{m + n}}\]
Where \[({x_1}{y_1})\] and \[({x_2},{y_2})\]6- coordinates of points given.
Complete step by step answer:
Let ratio is \[k:1\]
Let point given are \[A(15,5)\] and \[B(9,20)\]
\[{x_1} = 15,{y_1} = 5\] and \[{x_2} = 9,{y_2} = 20\] and \[m:n\] is \[k:1\]
\[x = \dfrac{{k \times 9 + 1 \times 15}}{{K + 1}},\,y = \dfrac{{k \times 20 + 1 \times 5}}{{K + 1}}\]
\[x = \dfrac{{9k + 15}}{{K + 1}},\,y = \dfrac{{20k + 5}}{{K + 1}}\]
Points \[(11,15)\] divides line joining points \[(15,5)\]and \[(9,20)\]. Here \[x = 11,y = 15\]
So, \[\dfrac{{9k + 15}}{{k + 1}} = 11\]
\[ \Rightarrow 9k + 15 = 11k + 11\]
\[ \Rightarrow 9k - 11k = 11 - 15\]
\[ \Rightarrow - 2k = - 4\]
\[ \Rightarrow k = 2\]
Ration is \[2:1\]
Note: The intercept theorem is about the ratio of line segments. We have two lines intersecting in point S. Let two parallel lines intersect them in points A, B, C, and D. The points make up various lines. segments such as (the line from S to A), (the line from A to C), and so on. The theorem tells us about the ratios of the lengths of those line segments. That is useful if we know some of them but not all, then we can use the intercept theorem and solve it for the line segment.
here in this question we can also points \[y = 15\]equals to \[\dfrac{{20k + 15}}{{k + 1}}\] and get \[k = 2\]
\[x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\]
\[y = \dfrac{{x{y_2} + n{y_1}}}{{m + n}}\]
Where \[({x_1}{y_1})\] and \[({x_2},{y_2})\]6- coordinates of points given.
Complete step by step answer:
Let ratio is \[k:1\]
Let point given are \[A(15,5)\] and \[B(9,20)\]
\[{x_1} = 15,{y_1} = 5\] and \[{x_2} = 9,{y_2} = 20\] and \[m:n\] is \[k:1\]
\[x = \dfrac{{k \times 9 + 1 \times 15}}{{K + 1}},\,y = \dfrac{{k \times 20 + 1 \times 5}}{{K + 1}}\]
\[x = \dfrac{{9k + 15}}{{K + 1}},\,y = \dfrac{{20k + 5}}{{K + 1}}\]
Points \[(11,15)\] divides line joining points \[(15,5)\]and \[(9,20)\]. Here \[x = 11,y = 15\]
So, \[\dfrac{{9k + 15}}{{k + 1}} = 11\]
\[ \Rightarrow 9k + 15 = 11k + 11\]
\[ \Rightarrow 9k - 11k = 11 - 15\]
\[ \Rightarrow - 2k = - 4\]
\[ \Rightarrow k = 2\]
Ration is \[2:1\]
Note: The intercept theorem is about the ratio of line segments. We have two lines intersecting in point S. Let two parallel lines intersect them in points A, B, C, and D. The points make up various lines. segments such as (the line from S to A), (the line from A to C), and so on. The theorem tells us about the ratios of the lengths of those line segments. That is useful if we know some of them but not all, then we can use the intercept theorem and solve it for the line segment.
here in this question we can also points \[y = 15\]equals to \[\dfrac{{20k + 15}}{{k + 1}}\] and get \[k = 2\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE