Find the rationalizing factor of: \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\]
A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
B. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\]
C. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 + 2\sqrt {30} } \right)\]
D. None of the above
Answer
Verified
499.2k+ views
Hint: The factor of multiplication by which rationalization is done is called the rationalizing factor. So, rationalize the given expression by using the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] twice to obtain the required answer.
Complete step-by-step answer:
Rationalising factor means the term by which we convert irrational numbers to rational numbers.
So, it means we have to choose a term by which we make \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a rational number.
We know that, \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Since,
\[
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = {\left( {\sqrt 3 + \sqrt {10} } \right)^2} - {\left( {\sqrt 5 } \right)^2} \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 3 + 10 + 2\sqrt 3 \sqrt {10} - 5 \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 8 + 2\sqrt {30} \\
\]
And
\[
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = {8^2} - {\left( {2\sqrt {30} } \right)^2} \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 4 \times 30 \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 120 = - 56 \\
\]
Therefore, \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right) = - 56\] which is a rational number.
Hence, \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\] is a rational number \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\].
Thus, the correct option is A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
Note: In this question, the given expression \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a Surd. If the product of two or more surds is a rational number then they are rationalizing factors to each other. Sometimes we divide to get the rationalizing factor.
Complete step-by-step answer:
Rationalising factor means the term by which we convert irrational numbers to rational numbers.
So, it means we have to choose a term by which we make \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a rational number.
We know that, \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Since,
\[
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = {\left( {\sqrt 3 + \sqrt {10} } \right)^2} - {\left( {\sqrt 5 } \right)^2} \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 3 + 10 + 2\sqrt 3 \sqrt {10} - 5 \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 8 + 2\sqrt {30} \\
\]
And
\[
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = {8^2} - {\left( {2\sqrt {30} } \right)^2} \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 4 \times 30 \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 120 = - 56 \\
\]
Therefore, \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right) = - 56\] which is a rational number.
Hence, \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\] is a rational number \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\].
Thus, the correct option is A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
Note: In this question, the given expression \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a Surd. If the product of two or more surds is a rational number then they are rationalizing factors to each other. Sometimes we divide to get the rationalizing factor.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it