
Find the rationalizing factor of: \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\]
A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
B. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\]
C. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 + 2\sqrt {30} } \right)\]
D. None of the above
Answer
597k+ views
Hint: The factor of multiplication by which rationalization is done is called the rationalizing factor. So, rationalize the given expression by using the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] twice to obtain the required answer.
Complete step-by-step answer:
Rationalising factor means the term by which we convert irrational numbers to rational numbers.
So, it means we have to choose a term by which we make \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a rational number.
We know that, \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Since,
\[
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = {\left( {\sqrt 3 + \sqrt {10} } \right)^2} - {\left( {\sqrt 5 } \right)^2} \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 3 + 10 + 2\sqrt 3 \sqrt {10} - 5 \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 8 + 2\sqrt {30} \\
\]
And
\[
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = {8^2} - {\left( {2\sqrt {30} } \right)^2} \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 4 \times 30 \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 120 = - 56 \\
\]
Therefore, \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right) = - 56\] which is a rational number.
Hence, \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\] is a rational number \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\].
Thus, the correct option is A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
Note: In this question, the given expression \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a Surd. If the product of two or more surds is a rational number then they are rationalizing factors to each other. Sometimes we divide to get the rationalizing factor.
Complete step-by-step answer:
Rationalising factor means the term by which we convert irrational numbers to rational numbers.
So, it means we have to choose a term by which we make \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a rational number.
We know that, \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Since,
\[
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = {\left( {\sqrt 3 + \sqrt {10} } \right)^2} - {\left( {\sqrt 5 } \right)^2} \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 3 + 10 + 2\sqrt 3 \sqrt {10} - 5 \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 8 + 2\sqrt {30} \\
\]
And
\[
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = {8^2} - {\left( {2\sqrt {30} } \right)^2} \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 4 \times 30 \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 120 = - 56 \\
\]
Therefore, \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right) = - 56\] which is a rational number.
Hence, \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\] is a rational number \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\].
Thus, the correct option is A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
Note: In this question, the given expression \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a Surd. If the product of two or more surds is a rational number then they are rationalizing factors to each other. Sometimes we divide to get the rationalizing factor.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

