
Find the reference angle in degrees and radians 120 degrees.
Answer
455.1k+ views
Hint:The reference angle is the angle between the terminal arm of the angle and the “x” axis always larger than zero degrees and smaller that each degree is divided into \[{60^ \circ }\] equal minutes and each minute is further divided into equal \[60\] seconds. The relation between degree and radian is given by the formula, \[{1^ \circ } = \dfrac{\pi }{{180}}\] where \[\pi \] a constant is whose value is approximately equal to\[3.14\].
Complete step by step answer:
Since, 120 degrees is in quadrant 2, the reference angle represented by \[\theta \]can be found by solving the equation\[120 + \theta = 180\]. Hence we can have the value of \[\theta \] from the equation as \[60\] by subtracting \[180\] from \[120\].
To convert this to radians we multiply by the ratio\[\dfrac{\pi }{{180}}\].
Hence we have,
\[60 \times \dfrac{\pi }{{180}}\]
We can have \[180\] cancelling \[60\] and become a \[3\] in the denominator.This leaves us with \[\dfrac{\pi }{3}\] radians, which is our reference angle in radians.
Note: Students may go wrong while converting the value from degree to radian, is that they might think that both \[\pi \] and \[{180^ \circ }\] are same in this instance as although we use both for same purpose as in angular form \[\pi \] is considered as \[{180^ \circ }\] but not here, here we need the value of \[\pi \] which is \[3.1415\] so they won’t cut themselves to reduced value of 1. The radian measure corresponding to the degree measure is obtained after converting them into radian by multiplying them with \[\dfrac{\pi }{{180}}\].The reference angle represented by \[\theta \] can be found by solving the equation \[120 + \theta = 180\] when in quadrant two.
Complete step by step answer:
Since, 120 degrees is in quadrant 2, the reference angle represented by \[\theta \]can be found by solving the equation\[120 + \theta = 180\]. Hence we can have the value of \[\theta \] from the equation as \[60\] by subtracting \[180\] from \[120\].
To convert this to radians we multiply by the ratio\[\dfrac{\pi }{{180}}\].
Hence we have,
\[60 \times \dfrac{\pi }{{180}}\]
We can have \[180\] cancelling \[60\] and become a \[3\] in the denominator.This leaves us with \[\dfrac{\pi }{3}\] radians, which is our reference angle in radians.
Note: Students may go wrong while converting the value from degree to radian, is that they might think that both \[\pi \] and \[{180^ \circ }\] are same in this instance as although we use both for same purpose as in angular form \[\pi \] is considered as \[{180^ \circ }\] but not here, here we need the value of \[\pi \] which is \[3.1415\] so they won’t cut themselves to reduced value of 1. The radian measure corresponding to the degree measure is obtained after converting them into radian by multiplying them with \[\dfrac{\pi }{{180}}\].The reference angle represented by \[\theta \] can be found by solving the equation \[120 + \theta = 180\] when in quadrant two.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
