Answer
Verified
430.5k+ views
Hint: In the above question, the concept is based on the concept of excluded values for rational for rational expressions. The main approach towards solving this expression is that we need to restrict any value for any variable in the denominator that would make that value of the denominator as zero.
Complete step by step solution:
The above given expression is an algebraic expression with numerator and denominator having the expression.
Generally, in the rational expression to simplify it we need to know that,
\[b \ne 0,\dfrac{{ab}}{b} = a\] where denominator should not be zero.
But when we need to restrict values or exclude values then it is also called as points of discontinuity.
Now these excluded values that make denominators equal to zero are not a part of the denominator.
Here the above given expression is $\dfrac{{{x^2} + x + 15}}{{{x^2} - 3x}}$.We need to look at the expression at the denominator and equate it with zero since we need to find the excluded values
\[{x^2} - 3x = 0\]
Now we can take x common from the expression we get,
\[
x\left( {x - 3} \right) = 0 \\
x = 0 \\
\]
or
\[x = 3\]
Hence, we get the above two values 0 and 3 and these values are already excluded from the domain of the rational expression.
Note: An important thing to note is that a value that makes the rational expression in the lowest form undefined then it is called an excluded value. Since we are not allowed to divide by zero, so these values are important to identify and exclude while solving.
Complete step by step solution:
The above given expression is an algebraic expression with numerator and denominator having the expression.
Generally, in the rational expression to simplify it we need to know that,
\[b \ne 0,\dfrac{{ab}}{b} = a\] where denominator should not be zero.
But when we need to restrict values or exclude values then it is also called as points of discontinuity.
Now these excluded values that make denominators equal to zero are not a part of the denominator.
Here the above given expression is $\dfrac{{{x^2} + x + 15}}{{{x^2} - 3x}}$.We need to look at the expression at the denominator and equate it with zero since we need to find the excluded values
\[{x^2} - 3x = 0\]
Now we can take x common from the expression we get,
\[
x\left( {x - 3} \right) = 0 \\
x = 0 \\
\]
or
\[x = 3\]
Hence, we get the above two values 0 and 3 and these values are already excluded from the domain of the rational expression.
Note: An important thing to note is that a value that makes the rational expression in the lowest form undefined then it is called an excluded value. Since we are not allowed to divide by zero, so these values are important to identify and exclude while solving.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE