Answer
Verified
497.4k+ views
Hint- Here, we will proceed with the help of factorization as well as discriminant formula to solve for the two roots of the given quadratic equation. For discriminant method we will apply the general formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ for any quadratic equation $a{x^2} + bx + c = 0$.
Complete step-by-step answer:
Given quadratic equation in variable x is ${x^2} + 7x + 12 = 0{\text{ }} \to {\text{(1)}}$
Here, we can solve this quadratic equation with the help of factorization method. The given quadratic equation can be written as
$ \Rightarrow {x^2} + 7x + 12 = 0 \Rightarrow {x^2} + 3x + 4x + 12 = 0 \Rightarrow x\left( {x + 3} \right) + 4\left( {x + 3} \right) = 0 \Rightarrow \left( {x + 3} \right)\left( {x + 4} \right) = 0$
Either $
\left( {x + 3} \right) = 0 \\
\Rightarrow x = - 3 \\
$ or $
\left( {x + 4} \right) = 0 \\
\Rightarrow x = - 4 \\
$
Hence, the two roots of the given quadratic equation are -3 and -4.
We can also solve the given quadratic equation by using the discriminant method.
For any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$
According to discriminant method, the roots of this quadratic equation is given by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}{\text{ }} \to {\text{(3)}}$
By comparing equations (1) and (2), we get
a=1, b=7 and c=12
Using the formula given by equation (3), the roots of the given quadratic equation are given by
\[x = \dfrac{{ - 7 \pm \sqrt {{{\left( 7 \right)}^2} - 4 \times 1 \times 12} }}{{2 \times 1}} = \dfrac{{ - 7 \pm \sqrt {49 - 48} }}{2} = \dfrac{{ - 7 \pm \sqrt 1 }}{2} = \dfrac{{ - 7 \pm 1}}{2}\]
Either \[x = \dfrac{{ - 7 + 1}}{2} = \dfrac{{ - 6}}{2} = - 3\] or \[x = \dfrac{{ - 7 - 1}}{2} = \dfrac{{ - 8}}{2} = - 4\]
So, the two roots of the given quadratic equation are -3 and -4.
Clearly, we are getting the same results from both factorization method and discriminant method.
Note- In these types of problems, we can use either factorization method or discriminant method to obtain the roots of the given quadratic equation. But discriminant method is usually adopted because it is an easier method as compared to factorization method for finding the roots of the given quadratic equation.
Complete step-by-step answer:
Given quadratic equation in variable x is ${x^2} + 7x + 12 = 0{\text{ }} \to {\text{(1)}}$
Here, we can solve this quadratic equation with the help of factorization method. The given quadratic equation can be written as
$ \Rightarrow {x^2} + 7x + 12 = 0 \Rightarrow {x^2} + 3x + 4x + 12 = 0 \Rightarrow x\left( {x + 3} \right) + 4\left( {x + 3} \right) = 0 \Rightarrow \left( {x + 3} \right)\left( {x + 4} \right) = 0$
Either $
\left( {x + 3} \right) = 0 \\
\Rightarrow x = - 3 \\
$ or $
\left( {x + 4} \right) = 0 \\
\Rightarrow x = - 4 \\
$
Hence, the two roots of the given quadratic equation are -3 and -4.
We can also solve the given quadratic equation by using the discriminant method.
For any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$
According to discriminant method, the roots of this quadratic equation is given by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}{\text{ }} \to {\text{(3)}}$
By comparing equations (1) and (2), we get
a=1, b=7 and c=12
Using the formula given by equation (3), the roots of the given quadratic equation are given by
\[x = \dfrac{{ - 7 \pm \sqrt {{{\left( 7 \right)}^2} - 4 \times 1 \times 12} }}{{2 \times 1}} = \dfrac{{ - 7 \pm \sqrt {49 - 48} }}{2} = \dfrac{{ - 7 \pm \sqrt 1 }}{2} = \dfrac{{ - 7 \pm 1}}{2}\]
Either \[x = \dfrac{{ - 7 + 1}}{2} = \dfrac{{ - 6}}{2} = - 3\] or \[x = \dfrac{{ - 7 - 1}}{2} = \dfrac{{ - 8}}{2} = - 4\]
So, the two roots of the given quadratic equation are -3 and -4.
Clearly, we are getting the same results from both factorization method and discriminant method.
Note- In these types of problems, we can use either factorization method or discriminant method to obtain the roots of the given quadratic equation. But discriminant method is usually adopted because it is an easier method as compared to factorization method for finding the roots of the given quadratic equation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE