Answer
Verified
497.4k+ views
Hint: To find the roots of the given equation by completing the square method, simplify the terms on the left hand side of the given equation in the form of a complete square. Equate the left hand side of the equation to zero and simplify to find the roots.
Complete step-by-step answer:
We have to find the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] by method of completing the square. To do so, we will rearrange the terms on left hand side of the equation to make a perfect square and equate it to zero to find the roots.
We can rewrite the equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\times \dfrac{1}{2}\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\].
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\].
To complete the square, we will add the given equation by the square of \[\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)\] on both sides.
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}\].
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\].
Simplifying the right side of this equation, we have
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2}\right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{\sqrt{2}}-\sqrt{2}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1-2}{\sqrt{2}}=\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}\].
We also know that \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].
So, we can write the left side of equation as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}\].
Similarly, we can write the right side of equation as \[\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].
Thus, we can write the equation as
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\] as \[{{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].
Taking square root on both sides, we have \[x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)=\pm \dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\].
Further simplifying the above equation, we have
$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\]
$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)\].
So, we have
$\Rightarrow$\[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\]
$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)=1\]
Hence, the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] are \[x=\sqrt{2},1\], which is option (a).
Note: There are multiple ways to solve this quadratic equation. We can also solve it using the factorization method by splitting the middle terms. We solved it by completing the square as it was given in the question. We can also check that the roots calculated by us are correct or not by substituting the roots in the quadratic equation and checking whether they satisfy the given equation or not.
Complete step-by-step answer:
We have to find the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] by method of completing the square. To do so, we will rearrange the terms on left hand side of the equation to make a perfect square and equate it to zero to find the roots.
We can rewrite the equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\times \dfrac{1}{2}\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\].
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\].
To complete the square, we will add the given equation by the square of \[\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)\] on both sides.
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}\].
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\].
Simplifying the right side of this equation, we have
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2}\right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{\sqrt{2}}-\sqrt{2}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1-2}{\sqrt{2}}=\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}\].
We also know that \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].
So, we can write the left side of equation as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}\].
Similarly, we can write the right side of equation as \[\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].
Thus, we can write the equation as
$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\] as \[{{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].
Taking square root on both sides, we have \[x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)=\pm \dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\].
Further simplifying the above equation, we have
$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\]
$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)\].
So, we have
$\Rightarrow$\[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\]
$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)=1\]
Hence, the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] are \[x=\sqrt{2},1\], which is option (a).
Note: There are multiple ways to solve this quadratic equation. We can also solve it using the factorization method by splitting the middle terms. We solved it by completing the square as it was given in the question. We can also check that the roots calculated by us are correct or not by substituting the roots in the quadratic equation and checking whether they satisfy the given equation or not.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE