
How do you find the scalar and vector projections of \[b\] onto \[a\]? Given \[a = i + j + k\], \[b = i - j + k\].
Answer
558.3k+ views
Hint:In the given question, we have been given two vectors. We have to find the scalar and vector projections of one vector onto the other vector. To do that, we apply the formulae of the projections – scalar projection of \[\overrightarrow x \] on \[\overrightarrow y \] means the magnitude of resolved component of \[\overrightarrow x \] in the direction of \[\overrightarrow y \], while vector projection of \[\overrightarrow x \] on \[\overrightarrow y \] means the resolved component of \[\overrightarrow x \] in the direction of \[\overrightarrow y \].
Formula Used:
Scalar projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{\left| {\overrightarrow y } \right|}}\].
Vector projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{{{\left| {\overrightarrow y } \right|}^2}}}.\overrightarrow y \].
Complete step by step answer:
The given vectors are \[\overrightarrow a = i + j + k\] and \[\overrightarrow b = i - j + k\].
Now, the scalar projection of \[\overrightarrow b \] onto \[\overrightarrow a \]\[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|}}\]
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \dfrac{{{1^2} - {1^2} + {1^2}}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\].
Vector projection \[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}.\overrightarrow a \].
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }}.\left( {i + j + k} \right) = \dfrac{1}{{\sqrt 3 }}\left( {i + j + k} \right)\].
Note: In the given question, we had to find the scalar and vector projections of one vector onto the other vector. We had been given the values of the vectors. We just simply wrote down the formulae of the two projections, put in the values of the vectors, calculated the result and we got our answer. So, it is really important that we know the formulae and where, when, and how to use them so that we can get the correct result.
Formula Used:
Scalar projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{\left| {\overrightarrow y } \right|}}\].
Vector projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{{{\left| {\overrightarrow y } \right|}^2}}}.\overrightarrow y \].
Complete step by step answer:
The given vectors are \[\overrightarrow a = i + j + k\] and \[\overrightarrow b = i - j + k\].
Now, the scalar projection of \[\overrightarrow b \] onto \[\overrightarrow a \]\[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|}}\]
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \dfrac{{{1^2} - {1^2} + {1^2}}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\].
Vector projection \[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}.\overrightarrow a \].
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }}.\left( {i + j + k} \right) = \dfrac{1}{{\sqrt 3 }}\left( {i + j + k} \right)\].
Note: In the given question, we had to find the scalar and vector projections of one vector onto the other vector. We had been given the values of the vectors. We just simply wrote down the formulae of the two projections, put in the values of the vectors, calculated the result and we got our answer. So, it is really important that we know the formulae and where, when, and how to use them so that we can get the correct result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

