
How do you find the scale factor of a dilation?
Answer
451.5k+ views
Hint:Here we must know what scale factor is. It is actually the comparison between two similar things that tell us about the scale or the ratio of the length of the larger to the smaller to the larger between two similar figures. The scale factor from larger to smaller will be greater than one and from smaller to larger will be less than one.
Complete step by step solution:
Here we are given to define the scale factor. The scale factor is calculated between two similar things. The example can make it clearer.
Let us take two similar rectangles, say $ABCD{\text{ and }}EFGH$ and their sides are in the ratio. Here $ABCD$ is the smaller rectangle while $EFGH$ is the larger rectangle. So let us draw their figures as:
Here we can see that both the rectangles are similar but only vary in their sizes. The bigger rectangle is twice the length and breadth as compared to the smaller one. So her if we want to find the scale factor from smaller to the larger rectangle, we can use the formula:
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}}$
As here we are finding the scale factor from the smaller to the larger. So we will say that the smaller dimension will be the dimension of the original shape and as we are going to the larger one so it will be the dimension of the new shape. So we can say that:
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}} = \dfrac{{40}}{{20}} = 2$
Similarly, if we find the scale factor from larger to the smaller shape, then the dimension of the larger will be the dimension of the original shape. Now we will get:
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}} = \dfrac{{20}}{{40}} = 0.5$.
So we can say that the scale factor tells us how much bigger or smaller the new similar figure is from the original one.
Note: Here the student must remember than when we are given two similar figures and we need to find the scale factor we must apply the formula
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}}$
Also, we can be given the scale factor and the new or original dimension, so then also we need to apply the same formula and get the required value.
Complete step by step solution:
Here we are given to define the scale factor. The scale factor is calculated between two similar things. The example can make it clearer.
Let us take two similar rectangles, say $ABCD{\text{ and }}EFGH$ and their sides are in the ratio. Here $ABCD$ is the smaller rectangle while $EFGH$ is the larger rectangle. So let us draw their figures as:

Here we can see that both the rectangles are similar but only vary in their sizes. The bigger rectangle is twice the length and breadth as compared to the smaller one. So her if we want to find the scale factor from smaller to the larger rectangle, we can use the formula:
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}}$
As here we are finding the scale factor from the smaller to the larger. So we will say that the smaller dimension will be the dimension of the original shape and as we are going to the larger one so it will be the dimension of the new shape. So we can say that:
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}} = \dfrac{{40}}{{20}} = 2$
Similarly, if we find the scale factor from larger to the smaller shape, then the dimension of the larger will be the dimension of the original shape. Now we will get:
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}} = \dfrac{{20}}{{40}} = 0.5$.
So we can say that the scale factor tells us how much bigger or smaller the new similar figure is from the original one.
Note: Here the student must remember than when we are given two similar figures and we need to find the scale factor we must apply the formula
${\text{scale factor}} = \dfrac{{{\text{dimension of new shape}}}}{{{\text{dimension of original shape}}}}$
Also, we can be given the scale factor and the new or original dimension, so then also we need to apply the same formula and get the required value.
Recently Updated Pages
How do you solve 05c+3492c4 class 8 maths CBSE

How do you solve dfrac1112dfracn36 class 8 maths CBSE

The value of 015 of 33dfrac13 of Rs10000 is A Rs005 class 8 maths CBSE

Convert 349cm into m class 8 physics CBSE

How do you find the square root of dfrac9144 class 8 maths CBSE

Construct the following quadrilateral Quadrilateral class 8 maths CBSE

Trending doubts
Write a book review which you have recently read in class 8 english CBSE

When people say No pun intended what does that mea class 8 english CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ounces are in 500 mL class 8 maths CBSE

You want to apply for admission into a prestigious class 8 english CBSE

Give a character sketch of Griffin the scientist in class 8 english CBSE
