
Find the second derivative i.e. \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] of \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Answer
621k+ views
Hint: Directly apply the derivative and apply necessary rules of differentiation. And the given expression should be derived with respect to $x$.
Complete step-by-step answer:
The given expression is
\[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given
expression with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}}\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e.,
$\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$
Applying this formula in the above equation, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}} \right)+\dfrac{d}{dx}\left( {{a}^{2}}{{y}^{2}}
\right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}} \right)\]
Now we know the differentiation of constant term is zero and taking out the constant term on L.H.S., we get
\[{{b}^{2}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{a}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)=0\]
Now applying the chain rule and we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ in the above equation, we get
\[2{{b}^{2}}x+2{{a}^{2}}y\dfrac{dy}{dx}=0\]
Dividing throughout by $'2'$ , we get
\[\begin{align}
& {{b}^{2}}x+{{a}^{2}}y\dfrac{dy}{dx}=0 \\
& \Rightarrow {{a}^{2}}y\dfrac{dy}{dx}=-{{b}^{2}}x \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y}........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
expression with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\dfrac{d}{dx}\left( \dfrac{x}{y}\right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-
u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y\dfrac{dx}{dx}-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\end{align}\]
Substitute value from equation (i), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-x\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)}{{{y}^{2}}}\]
Taking the LCM in numerator, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Substituting the value from the given equation \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Cancelling the like terms, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{b}^{2}}}{y} \right)}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{4}}}{{{a}^{2}}{{y}^{3}}} \\
\end{align}\]
This is the required second order derivative.
Note: Another approach is dividing the given expression by ${{a}^{2}}{{b}^{2}}$, you will get equation
of ellipse.
\[\begin{align}
& {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}} \\
& \Rightarrow
\dfrac{{{b}^{2}}{{x}^{2}}}{{{a}^{2}}{{b}^{2}}}+\dfrac{{{a}^{2}}{{y}^{2}}}{{{a}^{2}}{{b}^{2}}}=\dfrac{{{a}^{2
}}{{b}^{2}}}{{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 \\
\end{align}\]
Then we can differentiate, you will get the same answer.
Complete step-by-step answer:
The given expression is
\[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given
expression with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}}\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e.,
$\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$
Applying this formula in the above equation, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}} \right)+\dfrac{d}{dx}\left( {{a}^{2}}{{y}^{2}}
\right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}} \right)\]
Now we know the differentiation of constant term is zero and taking out the constant term on L.H.S., we get
\[{{b}^{2}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{a}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)=0\]
Now applying the chain rule and we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ in the above equation, we get
\[2{{b}^{2}}x+2{{a}^{2}}y\dfrac{dy}{dx}=0\]
Dividing throughout by $'2'$ , we get
\[\begin{align}
& {{b}^{2}}x+{{a}^{2}}y\dfrac{dy}{dx}=0 \\
& \Rightarrow {{a}^{2}}y\dfrac{dy}{dx}=-{{b}^{2}}x \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y}........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
expression with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\dfrac{d}{dx}\left( \dfrac{x}{y}\right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-
u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y\dfrac{dx}{dx}-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\end{align}\]
Substitute value from equation (i), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-x\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)}{{{y}^{2}}}\]
Taking the LCM in numerator, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Substituting the value from the given equation \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Cancelling the like terms, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{b}^{2}}}{y} \right)}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{4}}}{{{a}^{2}}{{y}^{3}}} \\
\end{align}\]
This is the required second order derivative.
Note: Another approach is dividing the given expression by ${{a}^{2}}{{b}^{2}}$, you will get equation
of ellipse.
\[\begin{align}
& {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}} \\
& \Rightarrow
\dfrac{{{b}^{2}}{{x}^{2}}}{{{a}^{2}}{{b}^{2}}}+\dfrac{{{a}^{2}}{{y}^{2}}}{{{a}^{2}}{{b}^{2}}}=\dfrac{{{a}^{2
}}{{b}^{2}}}{{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 \\
\end{align}\]
Then we can differentiate, you will get the same answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

