![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Find the set E of the value of X for which the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]is valid.
Answer
513.6k+ views
Hint: Similar to the binomial expansion of \[{{\left( 1+x \right)}^{n}}\], by using the binomial theorem; remove the constant from expression and it should be less than 1.
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}\end{align}\]
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)