Answer
Verified
498.9k+ views
Hint: Similar to the binomial expansion of \[{{\left( 1+x \right)}^{n}}\], by using the binomial theorem; remove the constant from expression and it should be less than 1.
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}\end{align}\]
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Complete step-by-step answer:
Binomial expansion is the algebraic expansion of powers of binomials. According the Binomial theorem, it is possible to expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where the exponents b and c are non-negative integer with \[b+c=n\], and the coefficient a of each term is a specific positive integers depending on n and b.
\[\begin{align}
& \therefore {{\left( x+y \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{n}}{{y}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{n-1}}{{y}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{n-2}}{{y}^{2}}+.....\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{0}}{{y}^{n}} \\
& \therefore {{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{n-k}}{{y}^{k}}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}}{{y}^{n-k}}} \\
\end{align}\]
Similarly,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{x}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{x}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{x}^{2}}+........+\left( \begin{matrix}
n \\
n-1 \\
\end{matrix} \right){{x}^{n-1}}+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{x}^{n}} \\
& {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+......+{{x}^{n}} \\
\end{align}\]
\[\therefore {{\left( 1+x \right)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{x}^{k}};}\] where, \[\left| x \right|<1\]
\[\therefore \]In the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]can be written as \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\]. Remove the constant term from the binomial expansion.
i.e. \[{{\left[ 2\left( 1+\dfrac{5x}{2} \right) \right]}^{\dfrac{-1}{2}}}={{2}^{\dfrac{-1}{2}}}{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]
Now, \[{{\left( 1+\dfrac{5x}{2} \right)}^{\dfrac{-1}{2}}}\]is similar to \[{{\left( 1+x \right)}^{n}}\]
\[\therefore \left| \dfrac{5x}{2} \right|\]should be less than 1.
\[\begin{align}
& \Rightarrow \left| \dfrac{5x}{2} \right|<1 \\
& -1<\dfrac{5x}{2}<1 \\
& \Rightarrow \dfrac{-2}{5}
\[\therefore \left( \dfrac{-2}{5},\dfrac{2}{5} \right)\]is the set E of values of x which is valid for the binomial expansion \[{{\left( 2+5x \right)}^{\dfrac{-1}{2}}}\].
Note: here, \[\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)=\dfrac{n!}{k!\left( n-k \right)!}\]
Where, \[n=0,{{x}^{0}}=1\]and \[\left( \begin{matrix}
0 \\
0 \\
\end{matrix} \right)=1\].
Recently Updated Pages
In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of
Which body formulates the foreign policy of India class 10 social science ICSE
When NaCl is dissolved in water the sodium ion becomes
The aqueous solution of aluminium chloride is acidic due to
What is the message of the poem Nine Gold Medals class 10 english ICSE
Give the summary of the story the enchanted pool class 10 english ICSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE