Answer
Verified
499.5k+ views
Hint: we will simplify the inequality and then find the values of the ‘x’ satisfying the inequality by plotting the equation.
Given,
$\dfrac{{8{x^2} + 16x - 51}}{{(2x - 3)(x + 4)}} < 3 \to (1)$
Now, let us simplify the inequality by adding -3 on both sides of equation (1), we get
$
\Rightarrow \dfrac{{8{x^2} + 16x - 51}}{{(2x - 3)(x + 4)}} - 3 < 3 - 3 \\
\Rightarrow \dfrac{{8{x^2} + 16x - 51}}{{(2x - 3)(x + 4)}} - 3 < 0 \\
\Rightarrow \dfrac{{8{x^2} + 16x - 51 - (3(2x - 3)(x + 4))}}{{(2x - 3)(x + 4)}} < 0 \\
$
Now, solving the numerator, we get
$
\Rightarrow \dfrac{{8{x^2} + 16x - 51 - (3(2{x^2} + 5x - 12))}}{{(2x - 3)(x + 4)}} < 0 \\
\Rightarrow \dfrac{{8{x^2} + 16x - 51 - 6{x^2} - 15x + 36}}{{(2x - 3)(x + 4)}} < 0 \\
\Rightarrow \dfrac{{2{x^2} + x - 15}}{{(2x - 3)(x + 4)}} < 0 \to (2) \\
$
Now, multiply and divide the L.H.S of equation (2) with $'(2x - 3)(x + 4)'$ , we get
$
\Rightarrow \dfrac{{2{x^2} + x - 15}}{{(2x - 3)(x + 4)}}*(\dfrac{{(2x - 3)(x + 4)}}{{(2x - 3)(x + 4)}}) < 0 \\
\Rightarrow \dfrac{{(2{x^2} + x - 15)((2x - 3)(x + 4))}}{{{{((2x - 3)(x + 4))}^2}}} < 0 \to (3) \\
$
Now, factoring the quadratic equation $2{x^2} + x - 15$ we get $(2x - 5)(x + 3)$ .Therefore, rewriting the equation (3), we get
$ \Rightarrow \dfrac{{(2x - 5)(x + 3)((2x - 3)(x + 4))}}{{{{((2x - 3)(x + 4))}^2}}} < 0 \to (4)$
Now, we can say the denominator is positive, since the square is always positive.
Now, to find the values of x we will only numerator i.e..,
$(2x - 5)(x + 3)((2x - 3)(x + 4)) < 0$
Solving the inequality by plotting, we get
Hence, when $x \in ( - 4, - 3) \cup (\dfrac{3}{2},\dfrac{5}{2})$ , equation (4) will be negative.
So, from the options given, only ‘B’ is suitable. Hence, option ‘B’ i.e.., $( - 4, - 3)$ is the required solution.
Note: Since, the denominator value is positive, therefore we have considered the numerator as negative to find the values of ‘x’ satisfying the given inequality.
Given,
$\dfrac{{8{x^2} + 16x - 51}}{{(2x - 3)(x + 4)}} < 3 \to (1)$
Now, let us simplify the inequality by adding -3 on both sides of equation (1), we get
$
\Rightarrow \dfrac{{8{x^2} + 16x - 51}}{{(2x - 3)(x + 4)}} - 3 < 3 - 3 \\
\Rightarrow \dfrac{{8{x^2} + 16x - 51}}{{(2x - 3)(x + 4)}} - 3 < 0 \\
\Rightarrow \dfrac{{8{x^2} + 16x - 51 - (3(2x - 3)(x + 4))}}{{(2x - 3)(x + 4)}} < 0 \\
$
Now, solving the numerator, we get
$
\Rightarrow \dfrac{{8{x^2} + 16x - 51 - (3(2{x^2} + 5x - 12))}}{{(2x - 3)(x + 4)}} < 0 \\
\Rightarrow \dfrac{{8{x^2} + 16x - 51 - 6{x^2} - 15x + 36}}{{(2x - 3)(x + 4)}} < 0 \\
\Rightarrow \dfrac{{2{x^2} + x - 15}}{{(2x - 3)(x + 4)}} < 0 \to (2) \\
$
Now, multiply and divide the L.H.S of equation (2) with $'(2x - 3)(x + 4)'$ , we get
$
\Rightarrow \dfrac{{2{x^2} + x - 15}}{{(2x - 3)(x + 4)}}*(\dfrac{{(2x - 3)(x + 4)}}{{(2x - 3)(x + 4)}}) < 0 \\
\Rightarrow \dfrac{{(2{x^2} + x - 15)((2x - 3)(x + 4))}}{{{{((2x - 3)(x + 4))}^2}}} < 0 \to (3) \\
$
Now, factoring the quadratic equation $2{x^2} + x - 15$ we get $(2x - 5)(x + 3)$ .Therefore, rewriting the equation (3), we get
$ \Rightarrow \dfrac{{(2x - 5)(x + 3)((2x - 3)(x + 4))}}{{{{((2x - 3)(x + 4))}^2}}} < 0 \to (4)$
Now, we can say the denominator is positive, since the square is always positive.
Now, to find the values of x we will only numerator i.e..,
$(2x - 5)(x + 3)((2x - 3)(x + 4)) < 0$
Solving the inequality by plotting, we get
Hence, when $x \in ( - 4, - 3) \cup (\dfrac{3}{2},\dfrac{5}{2})$ , equation (4) will be negative.
So, from the options given, only ‘B’ is suitable. Hence, option ‘B’ i.e.., $( - 4, - 3)$ is the required solution.
Note: Since, the denominator value is positive, therefore we have considered the numerator as negative to find the values of ‘x’ satisfying the given inequality.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE