Answer
Verified
462.9k+ views
Hint: Make use of the formula of the perpendicular distance between the two lines and try to find the distance
Formula used:
$\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$ is given by $d = \left| {\dfrac{{\left( {{b_1} \times {b_2}} \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {{b_1} \times {b_2}} \right|}}} \right|$ .
Complete step-by-step answer:
If two lines ${l_1}$ and ${l_2}$ are two skew lines, then there is only one line which is perpendicular to the two lines, which is the shortest distance between the two skew lines.
Equation of line first ${l_1}$ in vector form,
$\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$
Equation of line second ${l_2}$ in vector form,
$\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$
The shortest distance between the two lines $\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$
$d = \left| {\dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|$
Calculation of $\left( {{{\vec a}_2} - {{\vec a}_1}} \right)$ requires subtracting the terms which are in same direction, subtraction of two vectors give a vector quantity.
${a_1} = (\hat i + 2\hat j + 3\hat k)$ and ${a_2} = (4\hat i + 5\hat j + 6\hat k)$
\[
\left( {{a_2} - {a_1}} \right) = \left( {4\hat i + 5\hat j + 6\hat k} \right) - \left( {\hat i - 3\hat j + 2\hat k} \right) \\
\left( {{a_2} - {a_1}} \right) = \left( {4 - 1} \right)\hat i + \left( {5 - 3} \right)\hat j + \left( {6 - 2} \right)\hat k \\
\left( {{a_2} - {a_1}} \right) = 3\hat i + 2\hat j + 4\hat k \\
\]
Calculation of ${\vec b_1} \times {\vec b_2}$. It is a cross product of 2 vector quantities and it gives a vector quantity which is perpendicular to both the vectors.
Here, ${\vec b_1} = \left( {\hat i - 3\hat j + 2\hat k} \right)$ and ${\vec b_2} = \left( {2\hat i + 3\hat j + \hat k} \right)$
\[{b_1} \times {b_2} = \left( {\hat i + 2\hat j + 3\hat k} \right) \times \left( {2\hat i + 3\hat j + \hat k} \right)\]
The cross product of two vectors is calculated by the determinant.
$
{b_1} \times {b_2} = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&3 \\
2&3&1
\end{array}} \right| \\
{b_1} \times {b_2} = \hat i\left[ {1\left( {2 \times 1 - 3 \times 3} \right) - \hat j\left( {1 \times 1 - 3 \times 2} \right) + \hat k\left( {1 \times 3 - 2 \times 2} \right)} \right] \\
{b_1} \times {b_2} = \hat i\left( {2 - 9} \right) - \hat j\left( {1 - 6} \right) + \hat k\left( {3 - 4} \right) \\
{b_1} \times {b_2} = - 7\hat i + 5\hat j - \hat k \\
$
Calculate the modulus of \[\left| {{b_1} \times {b_2}} \right|\] ,
Using the formula for $\vec a = x\hat i + y\hat j + z\hat k$ as $\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
$
\left| {{b_1} \times {b_2}} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2}} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {49 + 25 + 1} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {75} \\
\\
$
Now, calculate the shortest distance between the two lines , by substituting the calculated values in equation(1),
$d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right|$
Now, use the dot product of the two vectors in the numerator of equation (2). The dot product of the vector is the scalar product as it gives only the magnitude.
\[
d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right| \\
d = \left| {\dfrac{{\left( { - 7} \right)\left( 3 \right) + \left( 5 \right)\left( 2 \right) - \left( 1 \right)\left( 4 \right)}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 21 + 10 - 4}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 15}}{{3\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 5}}{{\sqrt 3 }}} \right| \\
d = \dfrac{5}{{\sqrt 3 }} \\
\]
Hence, the shortest distance between the two lines is $d = \dfrac{5}{{\sqrt 3 }}$
Note: The important points which are supposed to be remembered are:
The vector multiplication can be done in two ways,
1)Dot product: It is the product which gives a scalar quantity.
2)Cross product: It gives the vector quantity.
Skew lines are the lines which are neither parallel nor intersect each other.
Formula used:
$\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$ is given by $d = \left| {\dfrac{{\left( {{b_1} \times {b_2}} \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {{b_1} \times {b_2}} \right|}}} \right|$ .
Complete step-by-step answer:
If two lines ${l_1}$ and ${l_2}$ are two skew lines, then there is only one line which is perpendicular to the two lines, which is the shortest distance between the two skew lines.
Equation of line first ${l_1}$ in vector form,
$\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$
Equation of line second ${l_2}$ in vector form,
$\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$
The shortest distance between the two lines $\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$
$d = \left| {\dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|$
Calculation of $\left( {{{\vec a}_2} - {{\vec a}_1}} \right)$ requires subtracting the terms which are in same direction, subtraction of two vectors give a vector quantity.
${a_1} = (\hat i + 2\hat j + 3\hat k)$ and ${a_2} = (4\hat i + 5\hat j + 6\hat k)$
\[
\left( {{a_2} - {a_1}} \right) = \left( {4\hat i + 5\hat j + 6\hat k} \right) - \left( {\hat i - 3\hat j + 2\hat k} \right) \\
\left( {{a_2} - {a_1}} \right) = \left( {4 - 1} \right)\hat i + \left( {5 - 3} \right)\hat j + \left( {6 - 2} \right)\hat k \\
\left( {{a_2} - {a_1}} \right) = 3\hat i + 2\hat j + 4\hat k \\
\]
Calculation of ${\vec b_1} \times {\vec b_2}$. It is a cross product of 2 vector quantities and it gives a vector quantity which is perpendicular to both the vectors.
Here, ${\vec b_1} = \left( {\hat i - 3\hat j + 2\hat k} \right)$ and ${\vec b_2} = \left( {2\hat i + 3\hat j + \hat k} \right)$
\[{b_1} \times {b_2} = \left( {\hat i + 2\hat j + 3\hat k} \right) \times \left( {2\hat i + 3\hat j + \hat k} \right)\]
The cross product of two vectors is calculated by the determinant.
$
{b_1} \times {b_2} = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&3 \\
2&3&1
\end{array}} \right| \\
{b_1} \times {b_2} = \hat i\left[ {1\left( {2 \times 1 - 3 \times 3} \right) - \hat j\left( {1 \times 1 - 3 \times 2} \right) + \hat k\left( {1 \times 3 - 2 \times 2} \right)} \right] \\
{b_1} \times {b_2} = \hat i\left( {2 - 9} \right) - \hat j\left( {1 - 6} \right) + \hat k\left( {3 - 4} \right) \\
{b_1} \times {b_2} = - 7\hat i + 5\hat j - \hat k \\
$
Calculate the modulus of \[\left| {{b_1} \times {b_2}} \right|\] ,
Using the formula for $\vec a = x\hat i + y\hat j + z\hat k$ as $\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
$
\left| {{b_1} \times {b_2}} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2}} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {49 + 25 + 1} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {75} \\
\\
$
Now, calculate the shortest distance between the two lines , by substituting the calculated values in equation(1),
$d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right|$
Now, use the dot product of the two vectors in the numerator of equation (2). The dot product of the vector is the scalar product as it gives only the magnitude.
\[
d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right| \\
d = \left| {\dfrac{{\left( { - 7} \right)\left( 3 \right) + \left( 5 \right)\left( 2 \right) - \left( 1 \right)\left( 4 \right)}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 21 + 10 - 4}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 15}}{{3\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 5}}{{\sqrt 3 }}} \right| \\
d = \dfrac{5}{{\sqrt 3 }} \\
\]
Hence, the shortest distance between the two lines is $d = \dfrac{5}{{\sqrt 3 }}$
Note: The important points which are supposed to be remembered are:
The vector multiplication can be done in two ways,
1)Dot product: It is the product which gives a scalar quantity.
2)Cross product: It gives the vector quantity.
Skew lines are the lines which are neither parallel nor intersect each other.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths