Answer
Verified
457.2k+ views
Hint: Make use of the formula of the perpendicular distance between the two lines and try to find the distance
Formula used:
$\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$ is given by $d = \left| {\dfrac{{\left( {{b_1} \times {b_2}} \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {{b_1} \times {b_2}} \right|}}} \right|$ .
Complete step-by-step answer:
If two lines ${l_1}$ and ${l_2}$ are two skew lines, then there is only one line which is perpendicular to the two lines, which is the shortest distance between the two skew lines.
Equation of line first ${l_1}$ in vector form,
$\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$
Equation of line second ${l_2}$ in vector form,
$\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$
The shortest distance between the two lines $\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$
$d = \left| {\dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|$
Calculation of $\left( {{{\vec a}_2} - {{\vec a}_1}} \right)$ requires subtracting the terms which are in same direction, subtraction of two vectors give a vector quantity.
${a_1} = (\hat i + 2\hat j + 3\hat k)$ and ${a_2} = (4\hat i + 5\hat j + 6\hat k)$
\[
\left( {{a_2} - {a_1}} \right) = \left( {4\hat i + 5\hat j + 6\hat k} \right) - \left( {\hat i - 3\hat j + 2\hat k} \right) \\
\left( {{a_2} - {a_1}} \right) = \left( {4 - 1} \right)\hat i + \left( {5 - 3} \right)\hat j + \left( {6 - 2} \right)\hat k \\
\left( {{a_2} - {a_1}} \right) = 3\hat i + 2\hat j + 4\hat k \\
\]
Calculation of ${\vec b_1} \times {\vec b_2}$. It is a cross product of 2 vector quantities and it gives a vector quantity which is perpendicular to both the vectors.
Here, ${\vec b_1} = \left( {\hat i - 3\hat j + 2\hat k} \right)$ and ${\vec b_2} = \left( {2\hat i + 3\hat j + \hat k} \right)$
\[{b_1} \times {b_2} = \left( {\hat i + 2\hat j + 3\hat k} \right) \times \left( {2\hat i + 3\hat j + \hat k} \right)\]
The cross product of two vectors is calculated by the determinant.
$
{b_1} \times {b_2} = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&3 \\
2&3&1
\end{array}} \right| \\
{b_1} \times {b_2} = \hat i\left[ {1\left( {2 \times 1 - 3 \times 3} \right) - \hat j\left( {1 \times 1 - 3 \times 2} \right) + \hat k\left( {1 \times 3 - 2 \times 2} \right)} \right] \\
{b_1} \times {b_2} = \hat i\left( {2 - 9} \right) - \hat j\left( {1 - 6} \right) + \hat k\left( {3 - 4} \right) \\
{b_1} \times {b_2} = - 7\hat i + 5\hat j - \hat k \\
$
Calculate the modulus of \[\left| {{b_1} \times {b_2}} \right|\] ,
Using the formula for $\vec a = x\hat i + y\hat j + z\hat k$ as $\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
$
\left| {{b_1} \times {b_2}} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2}} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {49 + 25 + 1} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {75} \\
\\
$
Now, calculate the shortest distance between the two lines , by substituting the calculated values in equation(1),
$d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right|$
Now, use the dot product of the two vectors in the numerator of equation (2). The dot product of the vector is the scalar product as it gives only the magnitude.
\[
d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right| \\
d = \left| {\dfrac{{\left( { - 7} \right)\left( 3 \right) + \left( 5 \right)\left( 2 \right) - \left( 1 \right)\left( 4 \right)}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 21 + 10 - 4}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 15}}{{3\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 5}}{{\sqrt 3 }}} \right| \\
d = \dfrac{5}{{\sqrt 3 }} \\
\]
Hence, the shortest distance between the two lines is $d = \dfrac{5}{{\sqrt 3 }}$
Note: The important points which are supposed to be remembered are:
The vector multiplication can be done in two ways,
1)Dot product: It is the product which gives a scalar quantity.
2)Cross product: It gives the vector quantity.
Skew lines are the lines which are neither parallel nor intersect each other.
Formula used:
$\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$ is given by $d = \left| {\dfrac{{\left( {{b_1} \times {b_2}} \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {{b_1} \times {b_2}} \right|}}} \right|$ .
Complete step-by-step answer:
If two lines ${l_1}$ and ${l_2}$ are two skew lines, then there is only one line which is perpendicular to the two lines, which is the shortest distance between the two skew lines.
Equation of line first ${l_1}$ in vector form,
$\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$
Equation of line second ${l_2}$ in vector form,
$\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$
The shortest distance between the two lines $\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$
$d = \left| {\dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|$
Calculation of $\left( {{{\vec a}_2} - {{\vec a}_1}} \right)$ requires subtracting the terms which are in same direction, subtraction of two vectors give a vector quantity.
${a_1} = (\hat i + 2\hat j + 3\hat k)$ and ${a_2} = (4\hat i + 5\hat j + 6\hat k)$
\[
\left( {{a_2} - {a_1}} \right) = \left( {4\hat i + 5\hat j + 6\hat k} \right) - \left( {\hat i - 3\hat j + 2\hat k} \right) \\
\left( {{a_2} - {a_1}} \right) = \left( {4 - 1} \right)\hat i + \left( {5 - 3} \right)\hat j + \left( {6 - 2} \right)\hat k \\
\left( {{a_2} - {a_1}} \right) = 3\hat i + 2\hat j + 4\hat k \\
\]
Calculation of ${\vec b_1} \times {\vec b_2}$. It is a cross product of 2 vector quantities and it gives a vector quantity which is perpendicular to both the vectors.
Here, ${\vec b_1} = \left( {\hat i - 3\hat j + 2\hat k} \right)$ and ${\vec b_2} = \left( {2\hat i + 3\hat j + \hat k} \right)$
\[{b_1} \times {b_2} = \left( {\hat i + 2\hat j + 3\hat k} \right) \times \left( {2\hat i + 3\hat j + \hat k} \right)\]
The cross product of two vectors is calculated by the determinant.
$
{b_1} \times {b_2} = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&3 \\
2&3&1
\end{array}} \right| \\
{b_1} \times {b_2} = \hat i\left[ {1\left( {2 \times 1 - 3 \times 3} \right) - \hat j\left( {1 \times 1 - 3 \times 2} \right) + \hat k\left( {1 \times 3 - 2 \times 2} \right)} \right] \\
{b_1} \times {b_2} = \hat i\left( {2 - 9} \right) - \hat j\left( {1 - 6} \right) + \hat k\left( {3 - 4} \right) \\
{b_1} \times {b_2} = - 7\hat i + 5\hat j - \hat k \\
$
Calculate the modulus of \[\left| {{b_1} \times {b_2}} \right|\] ,
Using the formula for $\vec a = x\hat i + y\hat j + z\hat k$ as $\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
$
\left| {{b_1} \times {b_2}} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2}} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {49 + 25 + 1} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {75} \\
\\
$
Now, calculate the shortest distance between the two lines , by substituting the calculated values in equation(1),
$d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right|$
Now, use the dot product of the two vectors in the numerator of equation (2). The dot product of the vector is the scalar product as it gives only the magnitude.
\[
d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right| \\
d = \left| {\dfrac{{\left( { - 7} \right)\left( 3 \right) + \left( 5 \right)\left( 2 \right) - \left( 1 \right)\left( 4 \right)}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 21 + 10 - 4}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 15}}{{3\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 5}}{{\sqrt 3 }}} \right| \\
d = \dfrac{5}{{\sqrt 3 }} \\
\]
Hence, the shortest distance between the two lines is $d = \dfrac{5}{{\sqrt 3 }}$
Note: The important points which are supposed to be remembered are:
The vector multiplication can be done in two ways,
1)Dot product: It is the product which gives a scalar quantity.
2)Cross product: It gives the vector quantity.
Skew lines are the lines which are neither parallel nor intersect each other.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE