Answer
Verified
431.7k+ views
Hint: The equation of the line is typically written as \[y = mx + b\] where “m” is the slope and “b” is the y-intercept that is the value where the line cuts the y-axis. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables.
Complete step-by-step answer:
We begin by writing in the form of \[y = mx + b\] from the equation given \[3x + y = - 4\] ,
The advantage to having the equation in this form is that “m” and “b” may be extracted easily.
Hence expressing \[3x + y = - 4\] in this form first we need to subtract \[3x\] from both the sides we have,
\[
3x + y - 3x = - 3x - 4 \\
\Rightarrow y = - 3x - 4 \;
\]
Now, \[y = - 3x - 4\] is in slope intercept form.
Hence now we can compare with the equation of the line that is Tthe equation of the line is typically written as \[y = mx + b\] where “m” is the slope and “b” is the y-intercept that is the value where the line cuts the y-axis we have,
Slope as \[ - 3\] and intercept as \[ - 4\] .
So, the correct answer is “Slope as \[ - 3\] and intercept as \[ - 4\] ”.
Note: If we are given the slope and one point then these values can be substituted into a formula which is based on the definition for slope that is \[y - {y_1} = m\left( {x - {x_1}} \right)\] . The values of “m” and “b” should be obtained by comparing with the line equation only. The slope of the line is the value of “m” and the “y” intercept is the value of “b”. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions.
Complete step-by-step answer:
We begin by writing in the form of \[y = mx + b\] from the equation given \[3x + y = - 4\] ,
The advantage to having the equation in this form is that “m” and “b” may be extracted easily.
Hence expressing \[3x + y = - 4\] in this form first we need to subtract \[3x\] from both the sides we have,
\[
3x + y - 3x = - 3x - 4 \\
\Rightarrow y = - 3x - 4 \;
\]
Now, \[y = - 3x - 4\] is in slope intercept form.
Hence now we can compare with the equation of the line that is Tthe equation of the line is typically written as \[y = mx + b\] where “m” is the slope and “b” is the y-intercept that is the value where the line cuts the y-axis we have,
Slope as \[ - 3\] and intercept as \[ - 4\] .
So, the correct answer is “Slope as \[ - 3\] and intercept as \[ - 4\] ”.
Note: If we are given the slope and one point then these values can be substituted into a formula which is based on the definition for slope that is \[y - {y_1} = m\left( {x - {x_1}} \right)\] . The values of “m” and “b” should be obtained by comparing with the line equation only. The slope of the line is the value of “m” and the “y” intercept is the value of “b”. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE