Answer
Verified
469.5k+ views
Hint: The slope of a line in the plane containing the \[x\] and \[y\] axes in generally represented by the letter m, and is defined by as the change in the \[y\]coordinates divided by the corresponding change in the \[x\]coordinate, between two distinct point on the line.
This is described by equation:
\[m = \dfrac{{\mathop y\nolimits_2 - \mathop y\nolimits_1 }}{{\mathop x\nolimits_2 - \mathop x\nolimits_1 }}\]
Where points \[(\mathop x\nolimits_1 ,\mathop y\nolimits_1 )\]and \[(\mathop x\nolimits_2 ,\mathop y\nolimits_2 )\] the change in \[x\] from one to the other is \[\mathop x\nolimits_2 - \mathop x\nolimits_1 \](run). While the change in \[y\] is \[\mathop y\nolimits_2 - \mathop y\nolimits_1 \] (rise) substituting both quantities into the above equation generates the formula.
Complete step-by- step solution:
Given, A line run through two points \[P = ( - 2,5)\]\[Q = (6,4)\]
Here in \[P = ( - 2,5)\] represents \[{x_1} , {y_1}\] where \[{x_1} = - 2,{y_1} = 5\]
And also \[Q = (6,4)\] represents \[{x_2} , {y_2}\] where \[{x_2} = 6,{y_2} = 4\]
We know that the slope of line is given by
\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Substitute the values \[{x_1} = - 2,{x_2} = 6\,and\,{y_1} = 5,{y_2} = 4\] we get,
\[m(slope) = \dfrac{{4 - 5}}{{6 - ( - 2)}}\]
\[m = \dfrac{{ - 1}}{{6 + 2}}\]
\[m = \dfrac{{ - 1}}{8}\]
Required slope of line \[m = \dfrac{{ - 1}}{8}\]
Note: A line is a one-dimensional figure, which has length but no width. A line made of a set of points which is extended in opposite directions infinitely. It is determined by two points in a two-dimensional plane. The two points which lie on the same line are said to be collinear points.
In geometry, there are different types of lines such as horizontal and vertical lines, parallel and perpendicular lines. These lines play an important role in the construction of different types of polygons.
For example, a square is made by four lines of the same lengths, whereas a triangle is made by joining three lines end to end. The above formula fails for a vertical line, parallel to\[y - axis\], where the slope can be taken as infinite. Since the slope is negative, the direction of the line is decreasing.
This is described by equation:
\[m = \dfrac{{\mathop y\nolimits_2 - \mathop y\nolimits_1 }}{{\mathop x\nolimits_2 - \mathop x\nolimits_1 }}\]
Where points \[(\mathop x\nolimits_1 ,\mathop y\nolimits_1 )\]and \[(\mathop x\nolimits_2 ,\mathop y\nolimits_2 )\] the change in \[x\] from one to the other is \[\mathop x\nolimits_2 - \mathop x\nolimits_1 \](run). While the change in \[y\] is \[\mathop y\nolimits_2 - \mathop y\nolimits_1 \] (rise) substituting both quantities into the above equation generates the formula.
Complete step-by- step solution:
Given, A line run through two points \[P = ( - 2,5)\]\[Q = (6,4)\]
Here in \[P = ( - 2,5)\] represents \[{x_1} , {y_1}\] where \[{x_1} = - 2,{y_1} = 5\]
And also \[Q = (6,4)\] represents \[{x_2} , {y_2}\] where \[{x_2} = 6,{y_2} = 4\]
We know that the slope of line is given by
\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Substitute the values \[{x_1} = - 2,{x_2} = 6\,and\,{y_1} = 5,{y_2} = 4\] we get,
\[m(slope) = \dfrac{{4 - 5}}{{6 - ( - 2)}}\]
\[m = \dfrac{{ - 1}}{{6 + 2}}\]
\[m = \dfrac{{ - 1}}{8}\]
Required slope of line \[m = \dfrac{{ - 1}}{8}\]
Note: A line is a one-dimensional figure, which has length but no width. A line made of a set of points which is extended in opposite directions infinitely. It is determined by two points in a two-dimensional plane. The two points which lie on the same line are said to be collinear points.
In geometry, there are different types of lines such as horizontal and vertical lines, parallel and perpendicular lines. These lines play an important role in the construction of different types of polygons.
For example, a square is made by four lines of the same lengths, whereas a triangle is made by joining three lines end to end. The above formula fails for a vertical line, parallel to\[y - axis\], where the slope can be taken as infinite. Since the slope is negative, the direction of the line is decreasing.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE