Answer
Verified
430.5k+ views
Hint: Slope is the change in the $y$-value divided by the change in the $x$-values.
Slope $=\dfrac{\text{Rate of change }my}{\text{Rate of change }mx}=\dfrac{rise}{sun}$
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
It is often expressed as rise over run. Identify $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ from given question.
Complete step by step solution:
As per the given problem, $\left( -3,-1 \right)$ and $\left( -1,5 \right)$ we the two points passing through the slope.
So, here you have to identify $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ from the given points.
Therefore, $\left( -3,-1 \right)$ and $\left( -1,5 \right)$
${{x}_{1}}=-3$
${{x}_{2}}=-1$
${{y}_{1}}=-1$
${{y}_{2}}=5$
Because points are written in $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ form.
Here, formula for finding the slope of the line passing two points is.
Slope of line $\left( m \right)=\dfrac{Rise}{Run}$
$=\dfrac{\text{Rate of change in value of }y}{\text{Rate of change in value of }x}$
$=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
$=\dfrac{5+1}{-1+3}$
$=\dfrac{6}{2}$
Therefore,
Slope of the line $\left( m \right)=3$
Hence slope of line passing through each pair of points $\left( -3,-1 \right)$and $\left( -1,5 \right)$ is $3.$
Additional Information:
The slope is a number that tells how much $'y'$ changes when $'x'$ changes. For example: a slope of $5$ means that for each change in $x$ of $1$ unit (for example between $6$ and $7)$ the corresponding $y$ changes of $5$units. This is for a positive slope, so that your value of $y$ is getting bigger.
The negative slope is the opposite. It tells you of how much $y$ decreases for each in orase of $1$ unit in $x.$ A slope of $-5$ tells you that the value of $y$-decreases of $5.$ units in the $1$unit interval of $x.$
Remember the slope of line is defined as
$Slope=\dfrac{Rise}{Run}$
And the rise of the horizontal line is zero since it is neither increasing nor decreasing. Therefore the slope of the line is zero.
Note:
Apply the formula of slope of line $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Where, ${{x}_{2}},{{x}_{1}}$ are the $x$ component of a given pair. And ${{y}_{1}},{{y}_{2}}$ are the $y$ components of a given pair.
Always remember that as in the formula $'-{{y}_{1}}'$ is given and if the value of $'{{y}_{1}}'$ is $'-1'$
Therefore it will become $+1$
$'-'\times '-'='+'$
Slope $=\dfrac{\text{Rate of change }my}{\text{Rate of change }mx}=\dfrac{rise}{sun}$
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
It is often expressed as rise over run. Identify $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ from given question.
Complete step by step solution:
As per the given problem, $\left( -3,-1 \right)$ and $\left( -1,5 \right)$ we the two points passing through the slope.
So, here you have to identify $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ from the given points.
Therefore, $\left( -3,-1 \right)$ and $\left( -1,5 \right)$
${{x}_{1}}=-3$
${{x}_{2}}=-1$
${{y}_{1}}=-1$
${{y}_{2}}=5$
Because points are written in $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ form.
Here, formula for finding the slope of the line passing two points is.
Slope of line $\left( m \right)=\dfrac{Rise}{Run}$
$=\dfrac{\text{Rate of change in value of }y}{\text{Rate of change in value of }x}$
$=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
$=\dfrac{5+1}{-1+3}$
$=\dfrac{6}{2}$
Therefore,
Slope of the line $\left( m \right)=3$
Hence slope of line passing through each pair of points $\left( -3,-1 \right)$and $\left( -1,5 \right)$ is $3.$
Additional Information:
The slope is a number that tells how much $'y'$ changes when $'x'$ changes. For example: a slope of $5$ means that for each change in $x$ of $1$ unit (for example between $6$ and $7)$ the corresponding $y$ changes of $5$units. This is for a positive slope, so that your value of $y$ is getting bigger.
The negative slope is the opposite. It tells you of how much $y$ decreases for each in orase of $1$ unit in $x.$ A slope of $-5$ tells you that the value of $y$-decreases of $5.$ units in the $1$unit interval of $x.$
Remember the slope of line is defined as
$Slope=\dfrac{Rise}{Run}$
And the rise of the horizontal line is zero since it is neither increasing nor decreasing. Therefore the slope of the line is zero.
Note:
Apply the formula of slope of line $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Where, ${{x}_{2}},{{x}_{1}}$ are the $x$ component of a given pair. And ${{y}_{1}},{{y}_{2}}$ are the $y$ components of a given pair.
Always remember that as in the formula $'-{{y}_{1}}'$ is given and if the value of $'{{y}_{1}}'$ is $'-1'$
Therefore it will become $+1$
$'-'\times '-'='+'$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE