Answer
Verified
431.4k+ views
Hint: We want to find the slope of the straight line, so we should use the slope-intercept form of the equation of the straight line. The slope-intercept form of a straight line is \[y=mx+c\], here m is the slope of the straight line, and c is the Y-intercept. We are given two points through which the line passes, so these two points must satisfy the equation of the straight line. After substituting, we will get two linear equations in c, and m. we can solve these equations to find the value of m, that is the slope of the straight line.
Complete step by step answer:
The equation of a straight line in slope-intercept form is \[y=mx+c\] , here m is the slope of the line and c is the Y-intercept. We are given that the line passes through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]. As the line passes through these points, they must satisfy the equation of the straight line.
Substituting \[\left( 6,-6 \right)\] in the equation of the straight line, we get \[-6=6m+c\]. Substituting \[\left( 4,5 \right)\] in the equation of the straight line, we get \[5=4m+c\]. We get the two equations. We can find the slope by solving them.
Subtracting the first equation from the second, we get
\[\Rightarrow 11=-2m\]
Dividing both sides of the above equation by \[-2\], we get
\[\Rightarrow m=-\dfrac{11}{2}\]
Hence, the slope of the straight line is \[-\dfrac{11}{2}\].
Using the points, we can also plot the graph of the line as follows
Note: We can also find the slope of the straight line using the formula,
\[slope=\dfrac{\Delta y}{\Delta x}\]
Using this formula here, we get
\[\begin{align}
& \Rightarrow slope=\dfrac{-6-5}{6-4} \\
& \therefore slope=-\dfrac{11}{2} \\
\end{align}\]
Thus, we get the same answer from both of the above methods.
Complete step by step answer:
The equation of a straight line in slope-intercept form is \[y=mx+c\] , here m is the slope of the line and c is the Y-intercept. We are given that the line passes through the points \[\left( 6,-6 \right)\And \left( 4,5 \right)\]. As the line passes through these points, they must satisfy the equation of the straight line.
Substituting \[\left( 6,-6 \right)\] in the equation of the straight line, we get \[-6=6m+c\]. Substituting \[\left( 4,5 \right)\] in the equation of the straight line, we get \[5=4m+c\]. We get the two equations. We can find the slope by solving them.
Subtracting the first equation from the second, we get
\[\Rightarrow 11=-2m\]
Dividing both sides of the above equation by \[-2\], we get
\[\Rightarrow m=-\dfrac{11}{2}\]
Hence, the slope of the straight line is \[-\dfrac{11}{2}\].
Using the points, we can also plot the graph of the line as follows
Note: We can also find the slope of the straight line using the formula,
\[slope=\dfrac{\Delta y}{\Delta x}\]
Using this formula here, we get
\[\begin{align}
& \Rightarrow slope=\dfrac{-6-5}{6-4} \\
& \therefore slope=-\dfrac{11}{2} \\
\end{align}\]
Thus, we get the same answer from both of the above methods.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE