Answer
Verified
424.2k+ views
Hint: LCM (lowest common multiple) of the given numbers is divisible by all the given numbers. So, first of all we have to find the lowest common multiple (LCM) of the given numbers, then write the multiple of LCM and the first multiple of the LCM which is a perfect square, is the required smallest perfect square number which is divisible by the number \[4\], $9$ and $10$.
Complete step-by-step solution:
Given that, we have to find the smallest perfect square number which is divisible by each of the numbers $4$ , $9$ and $10$.
First of all, find the lowest common multiple of the given numbers $4$ , $9$ and $10$.
$
2\left| {4,9,10} \right. \\
\,\,\,\,\left| {\overline {2,9,5} } \right. \\
$
LCM of \[4\], $9$ and $10$ $ = 2 \times 2 \times 9 \times 5$
LCM of \[4\], $9$ and $10$$ = 180$.
So, the lowest common multiple (LCM) of \[4\], $9$ and $10$ is $180$.
Now, we have to write the multiple of $180$.
$
180 \times 1 = 180 \\
180 \times 2 = 360 \\
180 \times 3 = 540 \\
180 \times 4 = 720 \\
180 \times 5 = 900
$.
By writing the multiple we got that the first number which is a perfect square, is the fifth multiple of $180$. So, the smallest perfect square number which is divisible by each of the numbers \[4\], $9$ and $10$ is \[900\].
Hence, the required perfect square number is $900$.
Note: Lowest common multiple can be alternatively calculated by the prime factorization method in which firstly we have to write the prime factor of \[4\], $9$ and $10$. And then multiply the factors by writing the factors single time which is repeated and the factor which is present once.
Similarly, if we have to find the number which is completely divisible by the given numbers then we have to only calculate their LCM which is the required number.
Complete step-by-step solution:
Given that, we have to find the smallest perfect square number which is divisible by each of the numbers $4$ , $9$ and $10$.
First of all, find the lowest common multiple of the given numbers $4$ , $9$ and $10$.
$
2\left| {4,9,10} \right. \\
\,\,\,\,\left| {\overline {2,9,5} } \right. \\
$
LCM of \[4\], $9$ and $10$ $ = 2 \times 2 \times 9 \times 5$
LCM of \[4\], $9$ and $10$$ = 180$.
So, the lowest common multiple (LCM) of \[4\], $9$ and $10$ is $180$.
Now, we have to write the multiple of $180$.
$
180 \times 1 = 180 \\
180 \times 2 = 360 \\
180 \times 3 = 540 \\
180 \times 4 = 720 \\
180 \times 5 = 900
$.
By writing the multiple we got that the first number which is a perfect square, is the fifth multiple of $180$. So, the smallest perfect square number which is divisible by each of the numbers \[4\], $9$ and $10$ is \[900\].
Hence, the required perfect square number is $900$.
Note: Lowest common multiple can be alternatively calculated by the prime factorization method in which firstly we have to write the prime factor of \[4\], $9$ and $10$. And then multiply the factors by writing the factors single time which is repeated and the factor which is present once.
Similarly, if we have to find the number which is completely divisible by the given numbers then we have to only calculate their LCM which is the required number.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE