Answer
Verified
460.8k+ views
Hint: In this question, we will first convert the given function into sine and cosine function and then use trigonometric identities to the simplified expression. After this we will equate the different terms to zero to get the solution of each and finally combine them to get the solution for the given equation.
Complete step-by-step answer:
Given equation is:
\[{\text{tan}}\theta + \tan 2\theta = \tan 3\theta \]
Now, converting the tangent function in to sine and cosine function, we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
Solving the left hand side, we get:
$\dfrac{{\sin \theta \times \cos 2\theta + \sin 2\theta \times \cos \theta }}{{\cos \theta \times \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (1)
We know that:
Sin (A+B) =$\sin A\cos B + \cos A\sin B$ .
So, using this identity equation 1 can be written as:
$\dfrac{{\sin (\theta + 2\theta )}}{{\cos \theta \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (2)
Now, using the identity,$\cos A\cos B = \dfrac{1}{2}\left( {\cos (A - B) + \cos (A + B} \right)$), we get:
$\dfrac{{\sin (\theta + 2\theta )}}{{\dfrac{1}{2}\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$ \Rightarrow \dfrac{{2\sin (3\theta )}}{{\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
We know that: $\cos ( - \theta ) = \cos \theta $
Therefore, the above equation can written as
$\dfrac{{2\sin (3\theta )}}{{\left( {\cos \theta + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (3)
Now, rearranging the equation 3, we get:
$\begin{gathered}
\dfrac{{2\sin (3\theta )}}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = 0 \\
\\
\end{gathered} $
Taking the $\sin 3\theta $ term common, we get:
\[\sin 3\theta \left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\]
Since, the products of two terms are zero. So the individual term will also be zero.
$\therefore \sin 3\theta = 0$ (4)
and \[\left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\] (5)
Solving equation 4, we get:
$3\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{3}$ (6)
Solving the equation 5, we get:
\[\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} = \dfrac{1}{{\cos 3\theta }}\]
\[ \Rightarrow 2\cos 3\theta = \cos \theta + \cos 3\theta \]
\[ \Rightarrow \cos 3\theta = \cos \theta \]
\[ \Rightarrow \cos 3\theta - \cos \theta = 0\]
Using the difference to product identity of cosine function
$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ , we get:
$2\sin 2\theta \sin \theta = 0$
$\therefore \sin 2\theta = 0$ (7)
Also
$\sin \theta = 0$ (8)
Solving equation 7, we get:
$2\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{2}$ (9)
We know that tangent function is not defined at $\theta = \dfrac{{n\pi }}{2}$
So, the solution given by equation 9 is not the solution for the given question.
Now, solving equation 8, we get
$\theta = n\pi $ (10)
Therefore, the solution for given equation are given by:
$\theta = \dfrac{{n\pi }}{3}$ and $\theta = n\pi $.
Note: In this type question, you can simplify the given equation by converting it into tangent function only and then use the trigonometric identity of tan(A+B)=$\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to further simplify it and get the equation in product form as $\tan \theta \tan 2\theta (\tan \theta + \tan 2\theta ) = 0$ and then finally find the solution by equating each term to zero. You should never forget to recheck the solution.
Complete step-by-step answer:
Given equation is:
\[{\text{tan}}\theta + \tan 2\theta = \tan 3\theta \]
Now, converting the tangent function in to sine and cosine function, we get:
$\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
Solving the left hand side, we get:
$\dfrac{{\sin \theta \times \cos 2\theta + \sin 2\theta \times \cos \theta }}{{\cos \theta \times \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (1)
We know that:
Sin (A+B) =$\sin A\cos B + \cos A\sin B$ .
So, using this identity equation 1 can be written as:
$\dfrac{{\sin (\theta + 2\theta )}}{{\cos \theta \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (2)
Now, using the identity,$\cos A\cos B = \dfrac{1}{2}\left( {\cos (A - B) + \cos (A + B} \right)$), we get:
$\dfrac{{\sin (\theta + 2\theta )}}{{\dfrac{1}{2}\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$ \Rightarrow \dfrac{{2\sin (3\theta )}}{{\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
We know that: $\cos ( - \theta ) = \cos \theta $
Therefore, the above equation can written as
$\dfrac{{2\sin (3\theta )}}{{\left( {\cos \theta + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ (3)
Now, rearranging the equation 3, we get:
$\begin{gathered}
\dfrac{{2\sin (3\theta )}}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = 0 \\
\\
\end{gathered} $
Taking the $\sin 3\theta $ term common, we get:
\[\sin 3\theta \left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\]
Since, the products of two terms are zero. So the individual term will also be zero.
$\therefore \sin 3\theta = 0$ (4)
and \[\left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0\] (5)
Solving equation 4, we get:
$3\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{3}$ (6)
Solving the equation 5, we get:
\[\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} = \dfrac{1}{{\cos 3\theta }}\]
\[ \Rightarrow 2\cos 3\theta = \cos \theta + \cos 3\theta \]
\[ \Rightarrow \cos 3\theta = \cos \theta \]
\[ \Rightarrow \cos 3\theta - \cos \theta = 0\]
Using the difference to product identity of cosine function
$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ , we get:
$2\sin 2\theta \sin \theta = 0$
$\therefore \sin 2\theta = 0$ (7)
Also
$\sin \theta = 0$ (8)
Solving equation 7, we get:
$2\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{2}$ (9)
We know that tangent function is not defined at $\theta = \dfrac{{n\pi }}{2}$
So, the solution given by equation 9 is not the solution for the given question.
Now, solving equation 8, we get
$\theta = n\pi $ (10)
Therefore, the solution for given equation are given by:
$\theta = \dfrac{{n\pi }}{3}$ and $\theta = n\pi $.
Note: In this type question, you can simplify the given equation by converting it into tangent function only and then use the trigonometric identity of tan(A+B)=$\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to further simplify it and get the equation in product form as $\tan \theta \tan 2\theta (\tan \theta + \tan 2\theta ) = 0$ and then finally find the solution by equating each term to zero. You should never forget to recheck the solution.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE