Answer
Verified
431.7k+ views
Hint:Whenever the right and left side of the equation do not have the same base then in that case we should take “log” both the sides. The power rule is used to multiply the two logarithms and to combine the exponents. The exponential expression should be kept by itself on one side of the equation. The logarithms of both sides of the equation should be obtained and should be solved for variable.
Complete step by step solution:
A logarithm is an exponent that is written in a special way. A logarithm with base \[10\]is a common logarithm.
The product rule states that\[{\log _b}\left( {MN} \right) = {\log _b}\left( M \right) + {\log _b}\left( N\right)\].
This property denotes that logarithm of a product is the sum of the logs of its factors. The two numbers should be multiplied with the same base then the exponents must be added.
The quotient rule states that \[{\log _b}\left( {\frac{M}{N}} \right) = {\log _b}\left( M \right) + {\log_b}\left( N \right)\]
This property denotes that the log of a quotient is the difference of the log of the dividend and the divisor.
Since, the right and left side of the equation do not have the same base then in that case we should take “log” both the sides.
We have,
\[
{2^x} = 7 \\
\Rightarrow \log \left( {{2^x}} \right) = \log \left( 7 \right) \\
\]
Using the log property we have,
\[ \Rightarrow x\log \left( 2 \right) = \log \left( 7 \right)\]
Solving for “x” now we will have,
\[
\Rightarrow x = \dfrac{{\log \left( 7 \right)}}{{\log \left( 2 \right)}} \\
\Rightarrow x \approx 2.81 \\
\]
Hence the solution of \[{2^x} = 7\] is\[ \approx 2.81\].
Note: Start by the condensing the log expressions on the left into a single logarithm using the product rule. What we want is to have a single log expression on each side of the equation. Since we want to transform the left side into a single logarithmic equation, then we should use the product rule in reverse to condense it. Always check the solved values with the original logarithmic equations.
Complete step by step solution:
A logarithm is an exponent that is written in a special way. A logarithm with base \[10\]is a common logarithm.
The product rule states that\[{\log _b}\left( {MN} \right) = {\log _b}\left( M \right) + {\log _b}\left( N\right)\].
This property denotes that logarithm of a product is the sum of the logs of its factors. The two numbers should be multiplied with the same base then the exponents must be added.
The quotient rule states that \[{\log _b}\left( {\frac{M}{N}} \right) = {\log _b}\left( M \right) + {\log_b}\left( N \right)\]
This property denotes that the log of a quotient is the difference of the log of the dividend and the divisor.
Since, the right and left side of the equation do not have the same base then in that case we should take “log” both the sides.
We have,
\[
{2^x} = 7 \\
\Rightarrow \log \left( {{2^x}} \right) = \log \left( 7 \right) \\
\]
Using the log property we have,
\[ \Rightarrow x\log \left( 2 \right) = \log \left( 7 \right)\]
Solving for “x” now we will have,
\[
\Rightarrow x = \dfrac{{\log \left( 7 \right)}}{{\log \left( 2 \right)}} \\
\Rightarrow x \approx 2.81 \\
\]
Hence the solution of \[{2^x} = 7\] is\[ \approx 2.81\].
Note: Start by the condensing the log expressions on the left into a single logarithm using the product rule. What we want is to have a single log expression on each side of the equation. Since we want to transform the left side into a single logarithmic equation, then we should use the product rule in reverse to condense it. Always check the solved values with the original logarithmic equations.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE