
Find the speed of sound in a mixture of 1 mol of helium and 2 mol of oxygen at ${{27}^{\circ }}C$.
A. $401m{{s}^{-1}}$
B. $301m{{s}^{-1}}$
C. $201m{{s}^{-1}}$
D. $101m{{s}^{-1}}$
Answer
538.2k+ views
Hint:Calculate the average molar mass of the given mixture. Then calculate the value of ${{\gamma }_{mix}}$ by calculating the specific heats of the mixture at constant pressure and constant volume. Later use the formula for the speed of sound in a mixture of gases.
Formula used:
$v=\sqrt{\dfrac{{{\gamma }_{mix}}RT}{{{M}_{mix}}}}$, where v is the speed of sound in the given mixture, R is gas constant and T of the temperature of the mixture and ${{M}_{mix}}$ is average molar mass.
${{M}_{mix}}=\dfrac{{{n}_{1}}{{M}_{1}}+{{n}_{2}}{{M}_{2}}}{{{n}_{1}}+{{n}_{2}}}$, where ${{n}_{1}}$ and ${{n}_{2}}$ are the numbers of moles of the two gases, ${{M}_{1}}$ and ${{M}_{2}}$ are the molar masses of the two gases.
${{\gamma }_{mix}}=\dfrac{{{C}_{P,mix}}}{{{C}_{V,mix}}}$
${{C}_{V,mix}}=\dfrac{{{n}_{1}}{{C}_{V,1}}+{{n}_{2}}{{C}_{V,2}}}{{{n}_{1}}+{{n}_{2}}}$, where ${{C}_{V,1}}$ and ${{C}_{V,2}}$ are the specific heats of the gases at constant volume.
${{C}_{P,mix}}=\dfrac{{{n}_{1}}{{C}_{P,1}}+{{n}_{2}}{{C}_{P,2}}}{{{n}_{1}}+{{n}_{2}}}$, where ${{C}_{P,1}}$ and ${{C}_{P,2}}$ are the specific heats of the gases at constant pressure.
${{C}_{V}}=\dfrac{f}{2}R$ and ${{C}_{P}}=\dfrac{f}{2}R$, where f is the number of degrees of freedom of the gas.
Complete step by step answer:
The speed of sound travelling in the given mixture is equal to $v=\sqrt{\dfrac{{{\gamma }_{mix}}RT}{{{M}_{mix}}}}$ ….. (i).
The molar mass of helium gas is equal to ${{M}_{1}}=4gmo{{l}^{-1}}$ and that of oxygen gas is equal to ${{M}_{2}}=32mo{{l}^{-1}}$.
As per the given data ${{n}_{1}}=1$ and ${{n}_{2}}=2$.
Therefore, the average molar mass of the mixture is equal to ${{M}_{mix}}=\dfrac{{{n}_{1}}{{M}_{1}}+{{n}_{2}}{{M}_{2}}}{{{n}_{1}}+{{n}_{2}}}=\dfrac{(1)(4)+(2)(32)}{1+2}=\dfrac{68}{3}gmo{{l}^{-1}}=\dfrac{68}{3}\times {{10}^{-3}}kgmo{{l}^{-1}}$.
Now, let calculate the value of ${{C}_{P,mix}}$ and ${{C}_{V,mix}}$.
Helium is a monatomic gas. Therefore, it has three degrees of freedom, i.e. ${{f}_{1}}=3$
This means that ${{C}_{P,1}}=\left( \dfrac{{{f}_{1}}}{2}+1 \right)R=\left( \dfrac{3}{2}+1 \right)R=\dfrac{5}{2}R$
And ${{C}_{V,1}}=\dfrac{{{f}_{1}}}{2}R=\dfrac{3}{2}R$.
Oxygen is a diatomic gas. Therefore, it has five degrees of freedom, i.e. ${{f}_{2}}=5$
This means that ${{C}_{P,2}}=\left( \dfrac{{{f}_{2}}}{2}+1 \right)R=\left( \dfrac{5}{2}+1 \right)R=\dfrac{7}{2}R$
And ${{C}_{V,2}}=\dfrac{{{f}_{2}}}{2}R=\dfrac{5}{2}R$.
Therefore, ${{C}_{V,mix}}=\dfrac{{{n}_{1}}{{C}_{V,1}}+{{n}_{2}}{{C}_{V,2}}}{{{n}_{1}}+{{n}_{2}}}$
Substitute the known values.
$\Rightarrow {{C}_{V,mix}}=\dfrac{(1)\left( \dfrac{3}{2}R \right)+(2)\left( \dfrac{5}{2}R \right)}{1+2}=\dfrac{13}{6}R$
And
${{C}_{P,mix}}=\dfrac{{{n}_{1}}{{C}_{P,1}}+{{n}_{2}}{{C}_{P,2}}}{{{n}_{1}}+{{n}_{2}}}$
$\Rightarrow {{C}_{P,mix}}=\dfrac{(1)\left( \dfrac{5}{2}R \right)+(2)\left( \dfrac{7}{2}R \right)}{1+2}=\dfrac{19}{6}R$.
Now, this means that
${{\gamma }_{mix}}=\dfrac{{{C}_{P,mix}}}{{{C}_{V,mix}}}=\dfrac{\dfrac{19}{6}R}{\dfrac{13}{6}R}=\dfrac{19}{13}$
It is given that the temperature of the mixture is ${{27}^{\circ }}C$.
$\Rightarrow T={{27}^{\circ }}C=300K$.
The value of gas constant $R=8.31J{{K}^{-1}}$.
Now, substitute all the known values in equation (i).
$\Rightarrow v=\sqrt{\dfrac{\dfrac{19}{13}\times 8.31\times 300}{\dfrac{68}{3}\times {{10}^{-3}}}}\\
\therefore v=400.9\approx 401m{{s}^{-1}}$
This means that the speed of the sound waves in the given mixture is $401m{{s}^{-1}}$.
Hence, the correct option is A.
Note: Some students can mismatch the formulae for the specific heat capacities of a gas at constant pressure and at constant volume. So they have to be careful with these formulas. Note that in formulae involving temperature, we must always substitute the value of temperature in the unit of Kelvin and not any other given unit.
Formula used:
$v=\sqrt{\dfrac{{{\gamma }_{mix}}RT}{{{M}_{mix}}}}$, where v is the speed of sound in the given mixture, R is gas constant and T of the temperature of the mixture and ${{M}_{mix}}$ is average molar mass.
${{M}_{mix}}=\dfrac{{{n}_{1}}{{M}_{1}}+{{n}_{2}}{{M}_{2}}}{{{n}_{1}}+{{n}_{2}}}$, where ${{n}_{1}}$ and ${{n}_{2}}$ are the numbers of moles of the two gases, ${{M}_{1}}$ and ${{M}_{2}}$ are the molar masses of the two gases.
${{\gamma }_{mix}}=\dfrac{{{C}_{P,mix}}}{{{C}_{V,mix}}}$
${{C}_{V,mix}}=\dfrac{{{n}_{1}}{{C}_{V,1}}+{{n}_{2}}{{C}_{V,2}}}{{{n}_{1}}+{{n}_{2}}}$, where ${{C}_{V,1}}$ and ${{C}_{V,2}}$ are the specific heats of the gases at constant volume.
${{C}_{P,mix}}=\dfrac{{{n}_{1}}{{C}_{P,1}}+{{n}_{2}}{{C}_{P,2}}}{{{n}_{1}}+{{n}_{2}}}$, where ${{C}_{P,1}}$ and ${{C}_{P,2}}$ are the specific heats of the gases at constant pressure.
${{C}_{V}}=\dfrac{f}{2}R$ and ${{C}_{P}}=\dfrac{f}{2}R$, where f is the number of degrees of freedom of the gas.
Complete step by step answer:
The speed of sound travelling in the given mixture is equal to $v=\sqrt{\dfrac{{{\gamma }_{mix}}RT}{{{M}_{mix}}}}$ ….. (i).
The molar mass of helium gas is equal to ${{M}_{1}}=4gmo{{l}^{-1}}$ and that of oxygen gas is equal to ${{M}_{2}}=32mo{{l}^{-1}}$.
As per the given data ${{n}_{1}}=1$ and ${{n}_{2}}=2$.
Therefore, the average molar mass of the mixture is equal to ${{M}_{mix}}=\dfrac{{{n}_{1}}{{M}_{1}}+{{n}_{2}}{{M}_{2}}}{{{n}_{1}}+{{n}_{2}}}=\dfrac{(1)(4)+(2)(32)}{1+2}=\dfrac{68}{3}gmo{{l}^{-1}}=\dfrac{68}{3}\times {{10}^{-3}}kgmo{{l}^{-1}}$.
Now, let calculate the value of ${{C}_{P,mix}}$ and ${{C}_{V,mix}}$.
Helium is a monatomic gas. Therefore, it has three degrees of freedom, i.e. ${{f}_{1}}=3$
This means that ${{C}_{P,1}}=\left( \dfrac{{{f}_{1}}}{2}+1 \right)R=\left( \dfrac{3}{2}+1 \right)R=\dfrac{5}{2}R$
And ${{C}_{V,1}}=\dfrac{{{f}_{1}}}{2}R=\dfrac{3}{2}R$.
Oxygen is a diatomic gas. Therefore, it has five degrees of freedom, i.e. ${{f}_{2}}=5$
This means that ${{C}_{P,2}}=\left( \dfrac{{{f}_{2}}}{2}+1 \right)R=\left( \dfrac{5}{2}+1 \right)R=\dfrac{7}{2}R$
And ${{C}_{V,2}}=\dfrac{{{f}_{2}}}{2}R=\dfrac{5}{2}R$.
Therefore, ${{C}_{V,mix}}=\dfrac{{{n}_{1}}{{C}_{V,1}}+{{n}_{2}}{{C}_{V,2}}}{{{n}_{1}}+{{n}_{2}}}$
Substitute the known values.
$\Rightarrow {{C}_{V,mix}}=\dfrac{(1)\left( \dfrac{3}{2}R \right)+(2)\left( \dfrac{5}{2}R \right)}{1+2}=\dfrac{13}{6}R$
And
${{C}_{P,mix}}=\dfrac{{{n}_{1}}{{C}_{P,1}}+{{n}_{2}}{{C}_{P,2}}}{{{n}_{1}}+{{n}_{2}}}$
$\Rightarrow {{C}_{P,mix}}=\dfrac{(1)\left( \dfrac{5}{2}R \right)+(2)\left( \dfrac{7}{2}R \right)}{1+2}=\dfrac{19}{6}R$.
Now, this means that
${{\gamma }_{mix}}=\dfrac{{{C}_{P,mix}}}{{{C}_{V,mix}}}=\dfrac{\dfrac{19}{6}R}{\dfrac{13}{6}R}=\dfrac{19}{13}$
It is given that the temperature of the mixture is ${{27}^{\circ }}C$.
$\Rightarrow T={{27}^{\circ }}C=300K$.
The value of gas constant $R=8.31J{{K}^{-1}}$.
Now, substitute all the known values in equation (i).
$\Rightarrow v=\sqrt{\dfrac{\dfrac{19}{13}\times 8.31\times 300}{\dfrac{68}{3}\times {{10}^{-3}}}}\\
\therefore v=400.9\approx 401m{{s}^{-1}}$
This means that the speed of the sound waves in the given mixture is $401m{{s}^{-1}}$.
Hence, the correct option is A.
Note: Some students can mismatch the formulae for the specific heat capacities of a gas at constant pressure and at constant volume. So they have to be careful with these formulas. Note that in formulae involving temperature, we must always substitute the value of temperature in the unit of Kelvin and not any other given unit.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

