
Find the square root of $ - 16 + 30i $ .
Answer
474k+ views
Hint: A complex number is a combination of real part and imaginary part. As per the complex coordinate system, $ x $ denotes the real axis and $ y $ represents the imaginary axis. The imaginary part consists of $ i $ called as imaginary unit number denotes square root of $ - 1 $ , i.e. $ i = \sqrt { - 1} $ . In the complex number of the form $ a + ib $ , $ a $ denotes the real part of the complex number and $ b $ denotes the imaginary part of the complex number. The magnitude of a complex number of the form $ a + ib $ is given as $ \sqrt {{a^2} + {b^2}} $ . Understanding of complex numbers is necessary in order to solve this type of question.
Complete step-by-step answer:
Let us assume that the square root of the given complex number is $ a + ib $ .
So, this means $ a + ib = \sqrt { - 16 + 30i} $
Now, we should square the equation on both sides.
$\Rightarrow {\left( {a + ib} \right)^2} = {\left( {\sqrt { - 16 + 30i} } \right)^2} $
We know that $ {i^2} = - 1 $ .
On simplifying the equation using the formula $ {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} $ , we get,
$\Rightarrow {a^2} - {b^2} + i2ab = - 16 + 30i $
Let us compare both sides of the equation and equate the imaginary parts of both sides as well as the real parts present on both sides of the equation.
$ {a^2} - {b^2} = - 16 $ and $ i2ab = 30 $
$ 2ab = 30 $ implies that $ ab = 15 $
It is known that $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
Let us assume that $ - 16 + 30i = {z^2} $ , this implies that $ a + ib = z $ .
But we already know that $ {\left| z \right|^2} = \left| {{z^2}} \right| $
Let us substitute $ {z^2} = - 16 + 30i $ and $ z = a + ib $ in the equation $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
After substitution, we get, $ {\left| {a + ib} \right|^2} = \left| { - 16 + 30i} \right| $ .
The magnitude of $ a + ib $ is $ \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} $ .
So,
$ \Rightarrow {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \left| { - 16 + 30i} \right| $ . Also $ \left| { - 16 + 30i} \right| = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
Now, $ {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
$
\Rightarrow {a^2} + {b^2} = \sqrt {256 + 900} \\
\Rightarrow {a^2} + {b^2} = \sqrt {1156} \\
\Rightarrow {a^2} + {b^2} = 34
$
$
ab = 15\\
a = \dfrac{{15}}{b}
$
Now, we can substitute in the equation $ {a^2} + {b^2} = 34 $ .
After substituting, we get, $ {\left( {\dfrac{{15}}{b}} \right)^2} + {b^2} = 34 $
$
\Rightarrow \dfrac{{225}}{{{b^2}}} + {b^2} = 34\\
\dfrac{{225 + {b^2} \cdot {b^2}}}{{{b^2}}} = 34\\
\dfrac{{225 + {b^4}}}{{{b^2}}} = 34
$
After multiplying $ {b^2} $ on both sides of the equation, we get $ 225 + {b^4} = 34{b^2} $
On rearranging the terms, we get, $ {b^4} - 34{b^2} + 225 = 0 $
It is known that $ 25 + 9 = 34 $ and $ 25 \times 9 = 225 $ .
So, $ {b^4} - 34{b^2} + 225 = 0 $ can be written as $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $ .
Now, let us take $ {b^2} $ and 9 common from the equation $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $
$ {b^2}\left( {{b^2} - 25} \right) - 9\left( {{b^2} - 25} \right) = 0\\
\left( {{b^2} - 25} \right)\left( {{b^2} - 9} \right) = 0 $
This implies, $ {b^2} - 9 = 0 $ and $ {b^2} - 25 = 0 $
So, $ b = \pm 3 $ and $ b = \pm 5 $
If b = 3, then $ a = 5 $ as $ a \cdot b = 15 $
If $ b = - 3 $ , then $ a = - 5 $ as $ a \cdot b = 15 $
If $ b = 5 $ , then $ a = 3 $ as $ a \cdot b = 15 $
If $ b = - 5 $ , then $ a = - 3 $ as $ a \cdot b = 15 $
But $ {a^2} - {b^2} = - 16 $ . So, the values of $ a $ and $ b $ should also satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = 3 and $ b = 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {3^2} - {5^2}\\
= 9 - 25\\
= - 16
$
So, a = 3 and $ b = 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 3 and $ b = - 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {\left( { - 3} \right)^2} - {\left( { - 5} \right)^2}\\
= 9 - 25\\
= - 16
$
So, a = - 3 and $ b = - 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 5 and $ b = - 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {\left( { - 5} \right)^2} - {\left( { - 3} \right)^2}\\
= 25 - 9\\
= 16
$
So, a = - 5 and $ b = - 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute $ a = 5 $ and $ b = 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {5^2} - {3^2}\\
= 25 - 9\\
= 16
$
So, $ a = 5 $ and $ b = 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
$ a = 3 $ , $ b = 5 $ and $ a = - 3 $ , $ b = - 5 $ .
The required complex numbers $ a + ib $ are $ - 3 - 5i $ and $ 3 + 5i $ .
Therefore, the square root of the complex number $ - 16 + 30i $ are $ - 3 - 5i $ and $ 3 + 5i $ .
So, the correct answer is “ $ - 3 - 5i $ and $ 3 + 5i $ ”.
Note: In this type of question, students use the formula for finding the magnitude of complex numbers properly without making any mistakes. Also, note that when the square of a variable is given as a constant, then the values of the variable are positive and negative of the square root of the constant. This can be represented mathematically as, if $ {x^2} = a $ then $ x = \pm a $ .
Complete step-by-step answer:
Let us assume that the square root of the given complex number is $ a + ib $ .
So, this means $ a + ib = \sqrt { - 16 + 30i} $
Now, we should square the equation on both sides.
$\Rightarrow {\left( {a + ib} \right)^2} = {\left( {\sqrt { - 16 + 30i} } \right)^2} $
We know that $ {i^2} = - 1 $ .
On simplifying the equation using the formula $ {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} $ , we get,
$\Rightarrow {a^2} - {b^2} + i2ab = - 16 + 30i $
Let us compare both sides of the equation and equate the imaginary parts of both sides as well as the real parts present on both sides of the equation.
$ {a^2} - {b^2} = - 16 $ and $ i2ab = 30 $
$ 2ab = 30 $ implies that $ ab = 15 $
It is known that $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
Let us assume that $ - 16 + 30i = {z^2} $ , this implies that $ a + ib = z $ .
But we already know that $ {\left| z \right|^2} = \left| {{z^2}} \right| $
Let us substitute $ {z^2} = - 16 + 30i $ and $ z = a + ib $ in the equation $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
After substitution, we get, $ {\left| {a + ib} \right|^2} = \left| { - 16 + 30i} \right| $ .
The magnitude of $ a + ib $ is $ \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} $ .
So,
$ \Rightarrow {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \left| { - 16 + 30i} \right| $ . Also $ \left| { - 16 + 30i} \right| = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
Now, $ {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
$
\Rightarrow {a^2} + {b^2} = \sqrt {256 + 900} \\
\Rightarrow {a^2} + {b^2} = \sqrt {1156} \\
\Rightarrow {a^2} + {b^2} = 34
$
$
ab = 15\\
a = \dfrac{{15}}{b}
$
Now, we can substitute in the equation $ {a^2} + {b^2} = 34 $ .
After substituting, we get, $ {\left( {\dfrac{{15}}{b}} \right)^2} + {b^2} = 34 $
$
\Rightarrow \dfrac{{225}}{{{b^2}}} + {b^2} = 34\\
\dfrac{{225 + {b^2} \cdot {b^2}}}{{{b^2}}} = 34\\
\dfrac{{225 + {b^4}}}{{{b^2}}} = 34
$
After multiplying $ {b^2} $ on both sides of the equation, we get $ 225 + {b^4} = 34{b^2} $
On rearranging the terms, we get, $ {b^4} - 34{b^2} + 225 = 0 $
It is known that $ 25 + 9 = 34 $ and $ 25 \times 9 = 225 $ .
So, $ {b^4} - 34{b^2} + 225 = 0 $ can be written as $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $ .
Now, let us take $ {b^2} $ and 9 common from the equation $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $
$ {b^2}\left( {{b^2} - 25} \right) - 9\left( {{b^2} - 25} \right) = 0\\
\left( {{b^2} - 25} \right)\left( {{b^2} - 9} \right) = 0 $
This implies, $ {b^2} - 9 = 0 $ and $ {b^2} - 25 = 0 $
So, $ b = \pm 3 $ and $ b = \pm 5 $
If b = 3, then $ a = 5 $ as $ a \cdot b = 15 $
If $ b = - 3 $ , then $ a = - 5 $ as $ a \cdot b = 15 $
If $ b = 5 $ , then $ a = 3 $ as $ a \cdot b = 15 $
If $ b = - 5 $ , then $ a = - 3 $ as $ a \cdot b = 15 $
But $ {a^2} - {b^2} = - 16 $ . So, the values of $ a $ and $ b $ should also satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = 3 and $ b = 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {3^2} - {5^2}\\
= 9 - 25\\
= - 16
$
So, a = 3 and $ b = 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 3 and $ b = - 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {\left( { - 3} \right)^2} - {\left( { - 5} \right)^2}\\
= 9 - 25\\
= - 16
$
So, a = - 3 and $ b = - 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 5 and $ b = - 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {\left( { - 5} \right)^2} - {\left( { - 3} \right)^2}\\
= 25 - 9\\
= 16
$
So, a = - 5 and $ b = - 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute $ a = 5 $ and $ b = 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {5^2} - {3^2}\\
= 25 - 9\\
= 16
$
So, $ a = 5 $ and $ b = 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
$ a = 3 $ , $ b = 5 $ and $ a = - 3 $ , $ b = - 5 $ .
The required complex numbers $ a + ib $ are $ - 3 - 5i $ and $ 3 + 5i $ .
Therefore, the square root of the complex number $ - 16 + 30i $ are $ - 3 - 5i $ and $ 3 + 5i $ .
So, the correct answer is “ $ - 3 - 5i $ and $ 3 + 5i $ ”.
Note: In this type of question, students use the formula for finding the magnitude of complex numbers properly without making any mistakes. Also, note that when the square of a variable is given as a constant, then the values of the variable are positive and negative of the square root of the constant. This can be represented mathematically as, if $ {x^2} = a $ then $ x = \pm a $ .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
