Answer
Verified
498.9k+ views
Hint: Take -7 + 24i = a + bi, where a = -7 and b = 24. Assume the square root of $\left( -7+24i \right)$ equal to $\left( x+iy \right)$. Take square and solve the equation obtained. Find the equation connecting x, y, a and b. Then find the roots.
Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is $\sqrt{a+ib}=x+iy\text{, where }x,y\in R$
Now square on both sides,
$\begin{align}
& {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\
\end{align}$
We know ${{i}^{2}}=-1$
$\begin{align}
& \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\
& a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\
\end{align}$
Let us take ${{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
$2xy=b.......................\left( 3 \right)$
$\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Take square root on both sides.
$\begin{align}
& \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\
\end{align}$
Add equation (2) and equation (4).
\[\dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}-{{y}^{2}}=a\text{ } \\
\end{align}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix}
\therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\
\therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\
\end{matrix}\]
Now subtract equation (2) and equation (4).
\[\begin{align}
& \dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\
\end{align}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\
& {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\
\end{align}\]
Now we have got the value of x and y.
$x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$
We have been asked to find the square root of (-7 +24i)
$\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy
Where a + ib = -7 + 24i
$\therefore $ a = -7
b = 24
Now squaring on both sides;
$\begin{align}
& {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\
& \therefore {{i}^{2}}=-1 \\
& \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\
\end{align}$
Now compare equation (1) and equation (6) which is similar.
$\begin{align}
& \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\
& 2xy=b\Rightarrow 2xy=24 \\
\end{align}$
Now substitute the value of a = -7 and b = 24 in equation (5).
$\begin{align}
& x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\
& y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\
& \therefore x+iy=\pm 3\pm 4 \\
\end{align}$
$\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$.
Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.
Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is $\sqrt{a+ib}=x+iy\text{, where }x,y\in R$
Now square on both sides,
$\begin{align}
& {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\
\end{align}$
We know ${{i}^{2}}=-1$
$\begin{align}
& \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\
& a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\
\end{align}$
Let us take ${{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
$2xy=b.......................\left( 3 \right)$
$\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Take square root on both sides.
$\begin{align}
& \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\
\end{align}$
Add equation (2) and equation (4).
\[\dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}-{{y}^{2}}=a\text{ } \\
\end{align}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix}
\therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\
\therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\
\end{matrix}\]
Now subtract equation (2) and equation (4).
\[\begin{align}
& \dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\
\end{align}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\
& {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\
\end{align}\]
Now we have got the value of x and y.
$x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$
We have been asked to find the square root of (-7 +24i)
$\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy
Where a + ib = -7 + 24i
$\therefore $ a = -7
b = 24
Now squaring on both sides;
$\begin{align}
& {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\
& \therefore {{i}^{2}}=-1 \\
& \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\
\end{align}$
Now compare equation (1) and equation (6) which is similar.
$\begin{align}
& \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\
& 2xy=b\Rightarrow 2xy=24 \\
\end{align}$
Now substitute the value of a = -7 and b = 24 in equation (5).
$\begin{align}
& x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\
& y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\
& \therefore x+iy=\pm 3\pm 4 \\
\end{align}$
$\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$.
Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE