Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Answer
Verified
500.4k+ views
Hint- Here, the formulas of ${n^{{\text{th}}}}$ term of an AP and sum of first $n$ terms of an AP will be used.
The natural numbers which are divisible by 2 are 2, 4, 6, 8, ……, 98, 100.
Clearly, the above series is an arithmetic progression with a common difference of 2.
The natural numbers which are divisible by 5 are 5, 10, 15, 20, ……, 95, 100.
Clearly, the above series is an arithmetic progression with a common difference of 5.
For an arithmetic progression consisting of first term as $a$, common difference as $d$ and total number of terms as $n$
Last term or ${n^{{\text{th}}}}$ term of the AP is given by ${a_n} = a + \left( {n - 1} \right)d{\text{ }} \to {\text{(1)}}$
Sum of first $n$ terms of the AP is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]{\text{ }} \to {\text{(2)}}$.
Now, for the arithmetic progression 2, 4, 6, 8, ……, 98, 100
$a = 2$, $d = 2$ and ${a_n} = 100$
Using equation (1), we can write
$ \Rightarrow 100 = 2 + 2\left( {n - 1} \right) \Rightarrow 100 = 2 + 2\left( {n - 1} \right) \Rightarrow 100 = 2 + 2n - 2 \Rightarrow 2n = 100 \Rightarrow n = 50$
So, the total number of natural numbers between 1 and 100 that are divisible by 2 are 50.
Now using equation (2), we have
${{\text{S}}_n} = \dfrac{{50}}{2}\left[ {2 + 100} \right] = \dfrac{{50 \times 102}}{2} = 2550$
So, the sum of all the natural numbers between 1 and 100 that are divisible by 2 is 2550.
Now, for the arithmetic progression 5, 10, 15, 20, ……, 95, 100
$a = 5$, $d = 5$ and ${a_n} = 100$
Using equation (1), we can write
$ \Rightarrow 100 = 2 + 2\left( {n - 1} \right) \Rightarrow 100 = 5 + 5\left( {n - 1} \right) \Rightarrow 100 = 5 + 5n - 5 \Rightarrow 5n = 100 \Rightarrow n = 20$
So, the total number of natural numbers between 1 and 100 that are divisible by 5 are 20.
Now using equation (2), we have
${{\text{S}}_n} = \dfrac{{20}}{2}\left[ {5 + 100} \right] = \dfrac{{20 \times 105}}{2} = 1050$
So, the sum of all the natural numbers between 1 and 100 that are divisible by 5 is 1050.
Also, natural numbers between 1 and 100 that are divisible by both 2 and 5 are 10, 20, 30, ……, 100
The above series also forms arithmetic progression with a common difference of 10.
Here, $a = 10$, $d = 10$ and ${a_n} = 100$
Using equation (1), we can write
$ \Rightarrow 100 = 10 + 10\left( {n - 1} \right) \Rightarrow 90 = 10n - 10 \Rightarrow 10n = 100 \Rightarrow n = 10$
So, the total number of natural numbers between 1 and 100 that are divisible by both 2 and 5 are 10.
Now using equation (2), we have
${{\text{S}}_n} = \dfrac{{10}}{2}\left[ {10 + 100} \right] = \dfrac{{10 \times 110}}{2} = 550$
So, the sum of all the natural numbers between 1 and 100 that are divisible by both 2 and 5 is 550.
Since, the sum of all the natural numbers between 1 and 100 that are divisible by 2 or 5 is equal to the sum of all the natural numbers between 1 and 100 that are divisible by 2 and those that are divisible by 5 minus the number of natural numbers between 1 and 100 that are divisible by both 2 and 5.
i.e., ${\text{Required Sum}} = \left( {2550 + 1050} \right) - 550 = 3050$.
Therefore, the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5 is 3050.
Note- In this particular problem, the sum of numbers between 1 and 100 that are divisible by 2 and those that are divisible by 5 will include the numbers that are divisible by both 2 and 5 twice. So in order to find the accurate result we will once subtract the sum of all the numbers between 1 and 100 that are divisible by both 2 and 5.
The natural numbers which are divisible by 2 are 2, 4, 6, 8, ……, 98, 100.
Clearly, the above series is an arithmetic progression with a common difference of 2.
The natural numbers which are divisible by 5 are 5, 10, 15, 20, ……, 95, 100.
Clearly, the above series is an arithmetic progression with a common difference of 5.
For an arithmetic progression consisting of first term as $a$, common difference as $d$ and total number of terms as $n$
Last term or ${n^{{\text{th}}}}$ term of the AP is given by ${a_n} = a + \left( {n - 1} \right)d{\text{ }} \to {\text{(1)}}$
Sum of first $n$ terms of the AP is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]{\text{ }} \to {\text{(2)}}$.
Now, for the arithmetic progression 2, 4, 6, 8, ……, 98, 100
$a = 2$, $d = 2$ and ${a_n} = 100$
Using equation (1), we can write
$ \Rightarrow 100 = 2 + 2\left( {n - 1} \right) \Rightarrow 100 = 2 + 2\left( {n - 1} \right) \Rightarrow 100 = 2 + 2n - 2 \Rightarrow 2n = 100 \Rightarrow n = 50$
So, the total number of natural numbers between 1 and 100 that are divisible by 2 are 50.
Now using equation (2), we have
${{\text{S}}_n} = \dfrac{{50}}{2}\left[ {2 + 100} \right] = \dfrac{{50 \times 102}}{2} = 2550$
So, the sum of all the natural numbers between 1 and 100 that are divisible by 2 is 2550.
Now, for the arithmetic progression 5, 10, 15, 20, ……, 95, 100
$a = 5$, $d = 5$ and ${a_n} = 100$
Using equation (1), we can write
$ \Rightarrow 100 = 2 + 2\left( {n - 1} \right) \Rightarrow 100 = 5 + 5\left( {n - 1} \right) \Rightarrow 100 = 5 + 5n - 5 \Rightarrow 5n = 100 \Rightarrow n = 20$
So, the total number of natural numbers between 1 and 100 that are divisible by 5 are 20.
Now using equation (2), we have
${{\text{S}}_n} = \dfrac{{20}}{2}\left[ {5 + 100} \right] = \dfrac{{20 \times 105}}{2} = 1050$
So, the sum of all the natural numbers between 1 and 100 that are divisible by 5 is 1050.
Also, natural numbers between 1 and 100 that are divisible by both 2 and 5 are 10, 20, 30, ……, 100
The above series also forms arithmetic progression with a common difference of 10.
Here, $a = 10$, $d = 10$ and ${a_n} = 100$
Using equation (1), we can write
$ \Rightarrow 100 = 10 + 10\left( {n - 1} \right) \Rightarrow 90 = 10n - 10 \Rightarrow 10n = 100 \Rightarrow n = 10$
So, the total number of natural numbers between 1 and 100 that are divisible by both 2 and 5 are 10.
Now using equation (2), we have
${{\text{S}}_n} = \dfrac{{10}}{2}\left[ {10 + 100} \right] = \dfrac{{10 \times 110}}{2} = 550$
So, the sum of all the natural numbers between 1 and 100 that are divisible by both 2 and 5 is 550.
Since, the sum of all the natural numbers between 1 and 100 that are divisible by 2 or 5 is equal to the sum of all the natural numbers between 1 and 100 that are divisible by 2 and those that are divisible by 5 minus the number of natural numbers between 1 and 100 that are divisible by both 2 and 5.
i.e., ${\text{Required Sum}} = \left( {2550 + 1050} \right) - 550 = 3050$.
Therefore, the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5 is 3050.
Note- In this particular problem, the sum of numbers between 1 and 100 that are divisible by 2 and those that are divisible by 5 will include the numbers that are divisible by both 2 and 5 twice. So in order to find the accurate result we will once subtract the sum of all the numbers between 1 and 100 that are divisible by both 2 and 5.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE