Answer
Verified
447.9k+ views
Hint: We have to find the sum of the first ${\text{n}}$ multiple of the number by using the arithmetic progression.
Arithmetic progressions is a sequence where each new term after the first is obtained by adding a constant ${\text{d}}$, called the common difference, to the preceding term. If the first term of the sequence is ${\text{a}}$ then the arithmetic progression is \[{\text{a,a + d,a + 2d,a + 3d,}}....\;\] where the ${{\text{n}}^{{\text{th}}}}$ term is \[{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}\] .
Formula used: The sum of the terms of an arithmetic progression gives an arithmetic series. If we know the first value \[{\text{a}}\] and the value of the last term ${\text{l}}$ instead of the common difference ${\text{d}}$ then, we can write the sum as
${{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left( {{\text{a + l}}} \right)$ .
Complete step-by-step answer:
The first ten multiples of six are $6,12,18,24,30,36,42,48,54,60$ .
Clearly, this is an arithmetic series. Because the difference between the terms is a constant value $6$and we also know that the first term, ${\text{a}} = 6$ and the last term, ${\text{l}} = 60$ .
From the given, we know that, ${\text{n = 10}}$.
Now, we can use the formula for the sum of an arithmetic progression.
If the last term is given in the arithmetic series, then the sum of the first n terms be
$ \Rightarrow {{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left( {{\text{a + l}}} \right)$ .
Now, for the sum of the first $10$ terms be
$ \Rightarrow {{\text{S}}_{10}}{\text{ = }}\dfrac{{10}}{2}\left( {{\text{6 + 60}}} \right)$
By adding and dividing the above terms, we get
$ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left( {66} \right)$
$ \Rightarrow {{\text{S}}_{{\text{10}}}}{\text{ = 33}}0$
Therefore, the sum of the first $10$ multiples of $6$ is $330$.
Note: There is an alternative method for the given question, by using the following formula.
The sum of the terms of an arithmetic progression gives an arithmetic series. If the starting value is $a$ and the common difference is \[d\] then the sum of the first ${\text{n}}$ terms is
${{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right]$ .
From the given arithmetic series, we get ${\text{a = 6,d = 6 and n = 10}}$. Then substitute in the above formula we get,
\[ \Rightarrow {{\text{S}}_{10}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{2}}}\left[ {{\text{2}}\left( 6 \right){\text{ + }}\left( {{\text{10 - 1}}} \right)6} \right]\]
Simplifying the terms we get,
$ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left[ {{\text{12 + }}\left( 9 \right)6} \right]$
Multiplying the terms we get,
\[ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left[ {{\text{12 + 54}}} \right]\]
Adding the terms,
$ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left[ {66} \right]$
Hence we get,
$ \Rightarrow {S_{10}} = 330$.
Hence, the sum of the first $10$ multiples of $6$ is $330$.
Arithmetic progressions is a sequence where each new term after the first is obtained by adding a constant ${\text{d}}$, called the common difference, to the preceding term. If the first term of the sequence is ${\text{a}}$ then the arithmetic progression is \[{\text{a,a + d,a + 2d,a + 3d,}}....\;\] where the ${{\text{n}}^{{\text{th}}}}$ term is \[{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}\] .
Formula used: The sum of the terms of an arithmetic progression gives an arithmetic series. If we know the first value \[{\text{a}}\] and the value of the last term ${\text{l}}$ instead of the common difference ${\text{d}}$ then, we can write the sum as
${{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left( {{\text{a + l}}} \right)$ .
Complete step-by-step answer:
The first ten multiples of six are $6,12,18,24,30,36,42,48,54,60$ .
Clearly, this is an arithmetic series. Because the difference between the terms is a constant value $6$and we also know that the first term, ${\text{a}} = 6$ and the last term, ${\text{l}} = 60$ .
From the given, we know that, ${\text{n = 10}}$.
Now, we can use the formula for the sum of an arithmetic progression.
If the last term is given in the arithmetic series, then the sum of the first n terms be
$ \Rightarrow {{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left( {{\text{a + l}}} \right)$ .
Now, for the sum of the first $10$ terms be
$ \Rightarrow {{\text{S}}_{10}}{\text{ = }}\dfrac{{10}}{2}\left( {{\text{6 + 60}}} \right)$
By adding and dividing the above terms, we get
$ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left( {66} \right)$
$ \Rightarrow {{\text{S}}_{{\text{10}}}}{\text{ = 33}}0$
Therefore, the sum of the first $10$ multiples of $6$ is $330$.
Note: There is an alternative method for the given question, by using the following formula.
The sum of the terms of an arithmetic progression gives an arithmetic series. If the starting value is $a$ and the common difference is \[d\] then the sum of the first ${\text{n}}$ terms is
${{\text{S}}_{\text{n}}}{\text{ = }}\dfrac{{\text{n}}}{{\text{2}}}\left[ {{\text{2a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right]$ .
From the given arithmetic series, we get ${\text{a = 6,d = 6 and n = 10}}$. Then substitute in the above formula we get,
\[ \Rightarrow {{\text{S}}_{10}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{2}}}\left[ {{\text{2}}\left( 6 \right){\text{ + }}\left( {{\text{10 - 1}}} \right)6} \right]\]
Simplifying the terms we get,
$ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left[ {{\text{12 + }}\left( 9 \right)6} \right]$
Multiplying the terms we get,
\[ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left[ {{\text{12 + 54}}} \right]\]
Adding the terms,
$ \Rightarrow {{\text{S}}_{10}}{\text{ = 5}}\left[ {66} \right]$
Hence we get,
$ \Rightarrow {S_{10}} = 330$.
Hence, the sum of the first $10$ multiples of $6$ is $330$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE