Answer
Verified
498.9k+ views
Hint: Gauss method is applicable only to arithmetic progression and from this we can conclude that the sequence is in AP and apply the suitable formula to find the sum of the given series.
Complete step-by-step answer:
The given series is -5,-4,-3,-2,-1,0,1,2………
We can conclude and say that this series is in Arithmetic Progression
Since, ${T_3} - {T_2} = {T_2} - {T_1}$ = -4-(-5)=1=d=common difference
We have to find out the sum of first 100 terms of the series using Gauss method
We know that Gauss formula is given by ${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
In the given series the first term=-5, last term is unknown
So, let us find out the nth term (last term) by making use of ${T_n}$ formula of AP
We know that the nth term ${T_n}$ of an AP is given by ${T_n} = a + (n - 1)d$
Here a=-5, n=100, d=1
Let’s substitute these values in the formula
So, we get ${T_{100}}$ =-5+(100-1)1
=-5+99
${T_{100}}$ =94=last term
We have to find out the sum of the first 100 terms by Gauss formula
${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
Here a=-5, d=1, last term=100
So, we can write
${S_{100}} = \dfrac{{100}}{2}[ - 5 + 94]$
=50[89]
=4,450
So, we can write ${S_{100}} = 4450$
Note: In this question ,we have been asked to find out the sum by Gaussian method , if it was not mentioned, we can find out the sum of the series by making use of an alternate formula.
Complete step-by-step answer:
The given series is -5,-4,-3,-2,-1,0,1,2………
We can conclude and say that this series is in Arithmetic Progression
Since, ${T_3} - {T_2} = {T_2} - {T_1}$ = -4-(-5)=1=d=common difference
We have to find out the sum of first 100 terms of the series using Gauss method
We know that Gauss formula is given by ${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
In the given series the first term=-5, last term is unknown
So, let us find out the nth term (last term) by making use of ${T_n}$ formula of AP
We know that the nth term ${T_n}$ of an AP is given by ${T_n} = a + (n - 1)d$
Here a=-5, n=100, d=1
Let’s substitute these values in the formula
So, we get ${T_{100}}$ =-5+(100-1)1
=-5+99
${T_{100}}$ =94=last term
We have to find out the sum of the first 100 terms by Gauss formula
${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
Here a=-5, d=1, last term=100
So, we can write
${S_{100}} = \dfrac{{100}}{2}[ - 5 + 94]$
=50[89]
=4,450
So, we can write ${S_{100}} = 4450$
Note: In this question ,we have been asked to find out the sum by Gaussian method , if it was not mentioned, we can find out the sum of the series by making use of an alternate formula.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE