
Find the sum of first n odd numbers.
Answer
624k+ views
Hint- The formula for the sum of an A.P is${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, where n is number of terms.
We have to find out the sum of first n odd numbers.
$ \Rightarrow 1 + 3 + 5 + 7 + .........................n{\text{ terms}}{\text{.}}$
As we see that $\left( {1,3,5,7..............n} \right)$makes an A.P
Where, number of terms of the series${\text{ = n}}$
First term $\left( {{a_1}} \right) = 1$
Common difference$\left( d \right) = \left( {3 - 1} \right) = \left( {5 - 3} \right) = 2$
Now apply the formula of sum of an A.P
$
{{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right) \\
\Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right)2} \right) \\
\Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left( {2 + \left( {n - 1} \right)2} \right) = n\left( {1 + n - 1} \right) = {n^2} \\
$
Note- In such types of questions always remember the basic formulas of an A.P which is stated above, then from the given condition calculate the values of first term and common difference, then apply the formula of sum of an A.P we will get the required sum of first n odd numbers.
We have to find out the sum of first n odd numbers.
$ \Rightarrow 1 + 3 + 5 + 7 + .........................n{\text{ terms}}{\text{.}}$
As we see that $\left( {1,3,5,7..............n} \right)$makes an A.P
Where, number of terms of the series${\text{ = n}}$
First term $\left( {{a_1}} \right) = 1$
Common difference$\left( d \right) = \left( {3 - 1} \right) = \left( {5 - 3} \right) = 2$
Now apply the formula of sum of an A.P
$
{{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right) \\
\Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right)2} \right) \\
\Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left( {2 + \left( {n - 1} \right)2} \right) = n\left( {1 + n - 1} \right) = {n^2} \\
$
Note- In such types of questions always remember the basic formulas of an A.P which is stated above, then from the given condition calculate the values of first term and common difference, then apply the formula of sum of an A.P we will get the required sum of first n odd numbers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

