Answer
Verified
501k+ views
Hint: Simply the expression & apply summation to get sum of n terms of series using standard formulas.
As, given in the question that ${n^{th}}$ term of the series is given by,
\[ \Rightarrow \]${n^{th}}$ term is \[ = {\text{ }}4n\left( {{n^2} + 1} \right) - \left( {6{n^2} + 1} \right) = 4{n^3} - 6{n^2} + 4n - 1\]
Now, we had to find the summation of n terms of the series whose ${n^{th}}$ term is given by
\[ \Rightarrow 4{n^3} - 6{n^2} + 4n - 1\]
So, applying summation to get sum of n terms of the series,
\[ \Rightarrow \]Sum of n terms of the series \[ = {\text{ }}4\Sigma {n^3} - 6\Sigma {n^2} + 4\Sigma n - \Sigma 1{\text{ }}\] (1)
Now, we had to break the above equation to find the sum of series.
And as we know that,
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^3}\], then sum of n terms will be \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] (statement 1)
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^2}\], then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\] (statement 2)
\[ \Rightarrow \]If ${n^{th}}$ term is $n$, then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\] (statement 3)
\[ \Rightarrow \]If all the terms are 1 then the sum of n terms of the series will be $n$. (statement 4)
So, putting values of statement 1, 2, 3 and 4 in equation 1, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = 4{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - 6\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 4\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n\]
Solving above equation, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = {n^4} + 2{n^3} + {n^2} - 2{n^3} - 3{n^2} - n + 2{n^2} + 2n - n = {n^4}\]
Hence, the sum of n terms of the given series will be \[{n^4}\].
Note:- Whenever we come up with this type of question then to find the solution of the problem efficiently, we must first, expand the given series and then apply the summation to the series. Then put values of \[\sum {{n^3}} \], \[\sum {{n^2}} \], \[\sum n \] and \[\sum 1 \] accordingly.
As, given in the question that ${n^{th}}$ term of the series is given by,
\[ \Rightarrow \]${n^{th}}$ term is \[ = {\text{ }}4n\left( {{n^2} + 1} \right) - \left( {6{n^2} + 1} \right) = 4{n^3} - 6{n^2} + 4n - 1\]
Now, we had to find the summation of n terms of the series whose ${n^{th}}$ term is given by
\[ \Rightarrow 4{n^3} - 6{n^2} + 4n - 1\]
So, applying summation to get sum of n terms of the series,
\[ \Rightarrow \]Sum of n terms of the series \[ = {\text{ }}4\Sigma {n^3} - 6\Sigma {n^2} + 4\Sigma n - \Sigma 1{\text{ }}\] (1)
Now, we had to break the above equation to find the sum of series.
And as we know that,
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^3}\], then sum of n terms will be \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] (statement 1)
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^2}\], then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\] (statement 2)
\[ \Rightarrow \]If ${n^{th}}$ term is $n$, then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\] (statement 3)
\[ \Rightarrow \]If all the terms are 1 then the sum of n terms of the series will be $n$. (statement 4)
So, putting values of statement 1, 2, 3 and 4 in equation 1, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = 4{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - 6\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 4\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n\]
Solving above equation, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = {n^4} + 2{n^3} + {n^2} - 2{n^3} - 3{n^2} - n + 2{n^2} + 2n - n = {n^4}\]
Hence, the sum of n terms of the given series will be \[{n^4}\].
Note:- Whenever we come up with this type of question then to find the solution of the problem efficiently, we must first, expand the given series and then apply the summation to the series. Then put values of \[\sum {{n^3}} \], \[\sum {{n^2}} \], \[\sum n \] and \[\sum 1 \] accordingly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE