
Find the sum of n terms of the series whose ${n^{th}}$ term is $4n\left( {{n^2} + 1} \right) - \left( {6n{}^2 + 1} \right)$.
Answer
623.4k+ views
Hint: Simply the expression & apply summation to get sum of n terms of series using standard formulas.
As, given in the question that ${n^{th}}$ term of the series is given by,
\[ \Rightarrow \]${n^{th}}$ term is \[ = {\text{ }}4n\left( {{n^2} + 1} \right) - \left( {6{n^2} + 1} \right) = 4{n^3} - 6{n^2} + 4n - 1\]
Now, we had to find the summation of n terms of the series whose ${n^{th}}$ term is given by
\[ \Rightarrow 4{n^3} - 6{n^2} + 4n - 1\]
So, applying summation to get sum of n terms of the series,
\[ \Rightarrow \]Sum of n terms of the series \[ = {\text{ }}4\Sigma {n^3} - 6\Sigma {n^2} + 4\Sigma n - \Sigma 1{\text{ }}\] (1)
Now, we had to break the above equation to find the sum of series.
And as we know that,
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^3}\], then sum of n terms will be \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] (statement 1)
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^2}\], then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\] (statement 2)
\[ \Rightarrow \]If ${n^{th}}$ term is $n$, then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\] (statement 3)
\[ \Rightarrow \]If all the terms are 1 then the sum of n terms of the series will be $n$. (statement 4)
So, putting values of statement 1, 2, 3 and 4 in equation 1, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = 4{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - 6\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 4\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n\]
Solving above equation, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = {n^4} + 2{n^3} + {n^2} - 2{n^3} - 3{n^2} - n + 2{n^2} + 2n - n = {n^4}\]
Hence, the sum of n terms of the given series will be \[{n^4}\].
Note:- Whenever we come up with this type of question then to find the solution of the problem efficiently, we must first, expand the given series and then apply the summation to the series. Then put values of \[\sum {{n^3}} \], \[\sum {{n^2}} \], \[\sum n \] and \[\sum 1 \] accordingly.
As, given in the question that ${n^{th}}$ term of the series is given by,
\[ \Rightarrow \]${n^{th}}$ term is \[ = {\text{ }}4n\left( {{n^2} + 1} \right) - \left( {6{n^2} + 1} \right) = 4{n^3} - 6{n^2} + 4n - 1\]
Now, we had to find the summation of n terms of the series whose ${n^{th}}$ term is given by
\[ \Rightarrow 4{n^3} - 6{n^2} + 4n - 1\]
So, applying summation to get sum of n terms of the series,
\[ \Rightarrow \]Sum of n terms of the series \[ = {\text{ }}4\Sigma {n^3} - 6\Sigma {n^2} + 4\Sigma n - \Sigma 1{\text{ }}\] (1)
Now, we had to break the above equation to find the sum of series.
And as we know that,
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^3}\], then sum of n terms will be \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] (statement 1)
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^2}\], then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\] (statement 2)
\[ \Rightarrow \]If ${n^{th}}$ term is $n$, then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\] (statement 3)
\[ \Rightarrow \]If all the terms are 1 then the sum of n terms of the series will be $n$. (statement 4)
So, putting values of statement 1, 2, 3 and 4 in equation 1, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = 4{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - 6\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 4\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n\]
Solving above equation, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = {n^4} + 2{n^3} + {n^2} - 2{n^3} - 3{n^2} - n + 2{n^2} + 2n - n = {n^4}\]
Hence, the sum of n terms of the given series will be \[{n^4}\].
Note:- Whenever we come up with this type of question then to find the solution of the problem efficiently, we must first, expand the given series and then apply the summation to the series. Then put values of \[\sum {{n^3}} \], \[\sum {{n^2}} \], \[\sum n \] and \[\sum 1 \] accordingly.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

