
Find the sum of odd integers from 1 to 2001.
Answer
625.8k+ views
Hint: Here, we will be using the formulas for ${n^{{\text{th}}}}$ term and the sum of first $n$ terms of an AP.
Since, the odd integers occurring from 1 to 2001 are $1,3,5,.....,1997,1999,2001$.
Here, ${a_1} = 1$, $d = 2$ and ${a_n} = 2001$(last term)
Clearly, the above series have a common difference of 2 and represents an arithmetic progression.
For an AP having the first term as ${a_1}$ and common difference as $d$, ${n^{{\text{th}}}}$ term of the AP is given by ${a_n} = {a_1} + \left( {n - 1} \right)d$
For the given series, ${n^{{\text{th}}}}$term (last term) of the AP is given by $2001 = 1 + \left( {n - 1} \right) \times 2 \Rightarrow 2001 = 1 + 2n - 2 \Rightarrow 2n = 2002 \Rightarrow n = 1001$
Therefore, the total number of terms in the given series is 1001.
Also, the formula for the sum of first $n$ terms of the AP is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$
So, the required sum of the given series is given by ${{\text{S}}_n} = \dfrac{{1001}}{2}\left[ {2\left( 1 \right) + \left( {1001 - 1} \right) \times 2} \right] = \dfrac{{1001}}{2}\left[ {2 + 2000} \right] = \dfrac{{1001 \times 2002}}{2} = 1002001$
Note: The difference between any two consecutive odd integers and between any two consecutive even integers is two because in between any two consecutive odd integers, one even integer occurs and similarly in between any two consecutive even integers, one odd integer occurs. The important thing in such types of problems is to identify the type of progression.
Since, the odd integers occurring from 1 to 2001 are $1,3,5,.....,1997,1999,2001$.
Here, ${a_1} = 1$, $d = 2$ and ${a_n} = 2001$(last term)
Clearly, the above series have a common difference of 2 and represents an arithmetic progression.
For an AP having the first term as ${a_1}$ and common difference as $d$, ${n^{{\text{th}}}}$ term of the AP is given by ${a_n} = {a_1} + \left( {n - 1} \right)d$
For the given series, ${n^{{\text{th}}}}$term (last term) of the AP is given by $2001 = 1 + \left( {n - 1} \right) \times 2 \Rightarrow 2001 = 1 + 2n - 2 \Rightarrow 2n = 2002 \Rightarrow n = 1001$
Therefore, the total number of terms in the given series is 1001.
Also, the formula for the sum of first $n$ terms of the AP is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$
So, the required sum of the given series is given by ${{\text{S}}_n} = \dfrac{{1001}}{2}\left[ {2\left( 1 \right) + \left( {1001 - 1} \right) \times 2} \right] = \dfrac{{1001}}{2}\left[ {2 + 2000} \right] = \dfrac{{1001 \times 2002}}{2} = 1002001$
Note: The difference between any two consecutive odd integers and between any two consecutive even integers is two because in between any two consecutive odd integers, one even integer occurs and similarly in between any two consecutive even integers, one odd integer occurs. The important thing in such types of problems is to identify the type of progression.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

