Answer
Verified
430.5k+ views
Hint: First find the common difference of the given arithmetic series by subtracting two successive terms. After finding the common difference “d” of the given arithmetic series use the below sum formula of arithmetic series in order to find the sum of the given arithmetic series: ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right],\;{\text{where}}\;{S_n}$ presents the sum of an arithmetic series up to $n$ terms having first term equals $a$ and common difference $d$
Complete step by step solution:
To find the sum of the arithmetic series $34 + 30 + 26 + .. + 2$ we will find the sum with help of formula for sum of $n$ numbers in arithmetic series, which is given as
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Where ${S_n}$ is the sum of $n$ terms in an arithmetic series having $a$ as its first term and $d$ as a common difference.
Common difference $(d)$ can be determine by the subtraction of any two successive terms in series
$ \Rightarrow d = 26 - 30 = - 4$
So we get the common difference $d = - 4$
In the arithmetic series $34 + 30 + 26 + .. + 2$, we can see first term is $a = 34$
Also in an arithmetic series ${r^{{\text{th}}}}$ term is given as ${a_r} = a + (n - 1)d$
We will use this formula to find the value of $n$
We know that $2$ is the last term in $34 + 30 + 26 + .. + 2$
It can be written as
$
\Rightarrow 2 = 34 + (n - 1)( - 4) \\
\Rightarrow 2 = 34 - 4n + 4 \\
\Rightarrow 4n = 38 - 2 \\
\Rightarrow 4n = 36 \\
\Rightarrow n = 9 \\
$
Now putting all the values to get sum,
$
{S_9} = \dfrac{9}{2}\left[ {2 \times 34 + \left( {9 - 1} \right)( - 4)} \right] \\
= \dfrac{9}{2}\left[ {68 - 32} \right] \\
= \dfrac{{9 \times 36}}{2} \\
= 162 \\
$
$\therefore $ sum of the arithmetic series $34 + 30 + 26 + .. + 2\;{\text{is}}\;162$
Formula used:
1. Sum of Arithmetic series, ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
2. Formula for ${r^{{\text{th}}}}$ term, ${a_r} = a + (n - 1)d$
Note: Common difference tells about the nature of an arithmetic series, if common difference is positive then arithmetic series is increasing and if it is negative then arithmetic series is decreasing. The above formula is invalid for finding the sum of infinite arithmetic series.
Complete step by step solution:
To find the sum of the arithmetic series $34 + 30 + 26 + .. + 2$ we will find the sum with help of formula for sum of $n$ numbers in arithmetic series, which is given as
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Where ${S_n}$ is the sum of $n$ terms in an arithmetic series having $a$ as its first term and $d$ as a common difference.
Common difference $(d)$ can be determine by the subtraction of any two successive terms in series
$ \Rightarrow d = 26 - 30 = - 4$
So we get the common difference $d = - 4$
In the arithmetic series $34 + 30 + 26 + .. + 2$, we can see first term is $a = 34$
Also in an arithmetic series ${r^{{\text{th}}}}$ term is given as ${a_r} = a + (n - 1)d$
We will use this formula to find the value of $n$
We know that $2$ is the last term in $34 + 30 + 26 + .. + 2$
It can be written as
$
\Rightarrow 2 = 34 + (n - 1)( - 4) \\
\Rightarrow 2 = 34 - 4n + 4 \\
\Rightarrow 4n = 38 - 2 \\
\Rightarrow 4n = 36 \\
\Rightarrow n = 9 \\
$
Now putting all the values to get sum,
$
{S_9} = \dfrac{9}{2}\left[ {2 \times 34 + \left( {9 - 1} \right)( - 4)} \right] \\
= \dfrac{9}{2}\left[ {68 - 32} \right] \\
= \dfrac{{9 \times 36}}{2} \\
= 162 \\
$
$\therefore $ sum of the arithmetic series $34 + 30 + 26 + .. + 2\;{\text{is}}\;162$
Formula used:
1. Sum of Arithmetic series, ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
2. Formula for ${r^{{\text{th}}}}$ term, ${a_r} = a + (n - 1)d$
Note: Common difference tells about the nature of an arithmetic series, if common difference is positive then arithmetic series is increasing and if it is negative then arithmetic series is decreasing. The above formula is invalid for finding the sum of infinite arithmetic series.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE