
How do you find the sum of the arithmetic series $34 + 30 + 26 + .. + 2?$
Answer
552.6k+ views
Hint: First find the common difference of the given arithmetic series by subtracting two successive terms. After finding the common difference “d” of the given arithmetic series use the below sum formula of arithmetic series in order to find the sum of the given arithmetic series: ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right],\;{\text{where}}\;{S_n}$ presents the sum of an arithmetic series up to $n$ terms having first term equals $a$ and common difference $d$
Complete step by step solution:
To find the sum of the arithmetic series $34 + 30 + 26 + .. + 2$ we will find the sum with help of formula for sum of $n$ numbers in arithmetic series, which is given as
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Where ${S_n}$ is the sum of $n$ terms in an arithmetic series having $a$ as its first term and $d$ as a common difference.
Common difference $(d)$ can be determine by the subtraction of any two successive terms in series
$ \Rightarrow d = 26 - 30 = - 4$
So we get the common difference $d = - 4$
In the arithmetic series $34 + 30 + 26 + .. + 2$, we can see first term is $a = 34$
Also in an arithmetic series ${r^{{\text{th}}}}$ term is given as ${a_r} = a + (n - 1)d$
We will use this formula to find the value of $n$
We know that $2$ is the last term in $34 + 30 + 26 + .. + 2$
It can be written as
$
\Rightarrow 2 = 34 + (n - 1)( - 4) \\
\Rightarrow 2 = 34 - 4n + 4 \\
\Rightarrow 4n = 38 - 2 \\
\Rightarrow 4n = 36 \\
\Rightarrow n = 9 \\
$
Now putting all the values to get sum,
$
{S_9} = \dfrac{9}{2}\left[ {2 \times 34 + \left( {9 - 1} \right)( - 4)} \right] \\
= \dfrac{9}{2}\left[ {68 - 32} \right] \\
= \dfrac{{9 \times 36}}{2} \\
= 162 \\
$
$\therefore $ sum of the arithmetic series $34 + 30 + 26 + .. + 2\;{\text{is}}\;162$
Formula used:
1. Sum of Arithmetic series, ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
2. Formula for ${r^{{\text{th}}}}$ term, ${a_r} = a + (n - 1)d$
Note: Common difference tells about the nature of an arithmetic series, if common difference is positive then arithmetic series is increasing and if it is negative then arithmetic series is decreasing. The above formula is invalid for finding the sum of infinite arithmetic series.
Complete step by step solution:
To find the sum of the arithmetic series $34 + 30 + 26 + .. + 2$ we will find the sum with help of formula for sum of $n$ numbers in arithmetic series, which is given as
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Where ${S_n}$ is the sum of $n$ terms in an arithmetic series having $a$ as its first term and $d$ as a common difference.
Common difference $(d)$ can be determine by the subtraction of any two successive terms in series
$ \Rightarrow d = 26 - 30 = - 4$
So we get the common difference $d = - 4$
In the arithmetic series $34 + 30 + 26 + .. + 2$, we can see first term is $a = 34$
Also in an arithmetic series ${r^{{\text{th}}}}$ term is given as ${a_r} = a + (n - 1)d$
We will use this formula to find the value of $n$
We know that $2$ is the last term in $34 + 30 + 26 + .. + 2$
It can be written as
$
\Rightarrow 2 = 34 + (n - 1)( - 4) \\
\Rightarrow 2 = 34 - 4n + 4 \\
\Rightarrow 4n = 38 - 2 \\
\Rightarrow 4n = 36 \\
\Rightarrow n = 9 \\
$
Now putting all the values to get sum,
$
{S_9} = \dfrac{9}{2}\left[ {2 \times 34 + \left( {9 - 1} \right)( - 4)} \right] \\
= \dfrac{9}{2}\left[ {68 - 32} \right] \\
= \dfrac{{9 \times 36}}{2} \\
= 162 \\
$
$\therefore $ sum of the arithmetic series $34 + 30 + 26 + .. + 2\;{\text{is}}\;162$
Formula used:
1. Sum of Arithmetic series, ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
2. Formula for ${r^{{\text{th}}}}$ term, ${a_r} = a + (n - 1)d$
Note: Common difference tells about the nature of an arithmetic series, if common difference is positive then arithmetic series is increasing and if it is negative then arithmetic series is decreasing. The above formula is invalid for finding the sum of infinite arithmetic series.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

