Answer
Verified
474.3k+ views
Hint: In this problem, we need to find the type of series in which the multiples of the 13 are present. Now, use the formula for the sum of \[n\] terms of A.P. to find the first sum of the first 20 multiples of 13.
Complete step-by-step answer:
The multiples of the 13 are shown below.
\[13,26,39,52, \ldots \ldots\]
It can be observed that the multiples of the 13 are in an arithmetic series whose first term is 13 and common difference is also 13.
Now, the formula for the sum of \[n\] term in arithmetic progression is shown below.
\[{S_n} = \dfrac{n}{2}\left\{ {2a + \left( {n - 1} \right)d} \right\}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right)\]
Here, \[a\] is the first term and \[d\] is a common difference.
Substitute 20 for\[n\], 13 for \[a\] and 13 for \[d\] in equation (1) to obtain the sum of the first 20 multiples of 13.
\[
\,\,\,\,\,\,{S_{20}} = \dfrac{{20}}{2}\left\{ {2\left( {13} \right) + \left( {20 - 1} \right)\left( {13} \right)} \right\} \\
\Rightarrow {S_{20}} = 10\left\{ {26 + \left( {19} \right)\left( {13} \right)} \right\} \\ \Rightarrow {S_{20}} = 10\left\{ {26 + 247} \right\} \\
\Rightarrow {S_{20}} = 10\left\{ {273} \right\} \\
\Rightarrow {S_{20}} = 2730 \\
\]
Thus, the sum of the first 20 multiples of 13 is 2730; hence option (B) is the correct answer.
Note: In arithmetic progression the difference of the two successive numbers are the same or a constant value. In other words in an arithmetic sequence, the numbers differ from each other by common difference.
Complete step-by-step answer:
The multiples of the 13 are shown below.
\[13,26,39,52, \ldots \ldots\]
It can be observed that the multiples of the 13 are in an arithmetic series whose first term is 13 and common difference is also 13.
Now, the formula for the sum of \[n\] term in arithmetic progression is shown below.
\[{S_n} = \dfrac{n}{2}\left\{ {2a + \left( {n - 1} \right)d} \right\}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right)\]
Here, \[a\] is the first term and \[d\] is a common difference.
Substitute 20 for\[n\], 13 for \[a\] and 13 for \[d\] in equation (1) to obtain the sum of the first 20 multiples of 13.
\[
\,\,\,\,\,\,{S_{20}} = \dfrac{{20}}{2}\left\{ {2\left( {13} \right) + \left( {20 - 1} \right)\left( {13} \right)} \right\} \\
\Rightarrow {S_{20}} = 10\left\{ {26 + \left( {19} \right)\left( {13} \right)} \right\} \\ \Rightarrow {S_{20}} = 10\left\{ {26 + 247} \right\} \\
\Rightarrow {S_{20}} = 10\left\{ {273} \right\} \\
\Rightarrow {S_{20}} = 2730 \\
\]
Thus, the sum of the first 20 multiples of 13 is 2730; hence option (B) is the correct answer.
Note: In arithmetic progression the difference of the two successive numbers are the same or a constant value. In other words in an arithmetic sequence, the numbers differ from each other by common difference.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE