Answer
Verified
444.9k+ views
Hint:
We start solving the problem by making the simplifications in the given series to find the general term that represents every term of the series. Once we find the general terms, we make the simplifications in it by making use of the fact that sum of squares of first n natural numbers is defined as $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ . We then substitute this in sum and make use of the sum of squares and cubes of first n natural numbers to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the sum of the given series $ 1+6+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ up to 15 terms.
Let us assume $ S=1+6+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
$ \Rightarrow S=\dfrac{3\left( 1 \right)}{3}+\dfrac{6\left( 5 \right)}{5}+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
$ \Rightarrow S=\dfrac{3\left( 1 \right)}{3}+\dfrac{6\left( 1+4 \right)}{5}+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
$ \Rightarrow S=\dfrac{3\left( {{1}^{2}} \right)}{3}+\dfrac{6\left( {{1}^{2}}+{{2}^{2}} \right)}{5}+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
\[\Rightarrow S=\dfrac{\left( 3\times 1 \right)\left( {{1}^{2}} \right)}{\left( 2+1 \right)}+\dfrac{\left( 3\times 2 \right)\left( {{1}^{2}}+{{2}^{2}} \right)}{\left( 4+1 \right)}+\dfrac{\left( 3\times 3 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{\left( 6+1 \right)}+\dfrac{\left( 3\times 4 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{\left( 8+1 \right)}+\dfrac{\left( 3\times 5 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{\left( 10+1 \right)}+......\].
\[\Rightarrow S=\dfrac{\left( 3\times 1 \right)\left( {{1}^{2}} \right)}{\left( \left( 2\times 1 \right)+1 \right)}+\dfrac{\left( 3\times 2 \right)\left( {{1}^{2}}+{{2}^{2}} \right)}{\left( \left( 2\times 2 \right)+1 \right)}+\dfrac{\left( 3\times 3 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{\left( \left( 2\times 3 \right)+1 \right)}+\dfrac{\left( 3\times 4 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{\left( \left( 2\times 4 \right)+1 \right)}+\dfrac{\left( 3\times 5 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{\left( \left( 2\times 5 \right)+1 \right)}+......\] ---(1).
From equation (1), we can see that each term of the series is in the form of $ {{T}_{r}}=\dfrac{\left( 3r \right)\left( {{1}^{2}}+{{2}^{2}}+....+{{r}^{2}} \right)}{\left( 2r+1 \right)} $ .
So, we can write equation (1) as $ S=\sum\limits_{r=1}^{r=15}{{{T}_{r}}} $ ---(2).
Let us first simplify $ {{T}_{r}} $ and then substitute that in equation (2).
So, we have $ {{T}_{r}}=\dfrac{\left( 3r \right)\left( {{1}^{2}}+{{2}^{2}}+....+{{r}^{2}} \right)}{\left( 2r+1 \right)} $ .
We know that the sum of squares of first n natural numbers is defined as $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ .
$ \Rightarrow {{T}_{r}}=\dfrac{\left( 3r \right)\left( \dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6} \right)}{\left( 2r+1 \right)} $ .
$ \Rightarrow {{T}_{r}}=\dfrac{{{r}^{2}}\left( r+1 \right)}{2} $ .
$ \Rightarrow {{T}_{r}}=\dfrac{{{r}^{3}}+{{r}^{2}}}{2} $ ---(3).
Let us substitute equation (3) in equation (2).
$ \Rightarrow S=\sum\limits_{r=1}^{r=15}{\left( \dfrac{{{r}^{3}}+{{r}^{2}}}{2} \right)} $ .
$ \Rightarrow S=\dfrac{1}{2}\left( \sum\limits_{r=1}^{r=15}{{{r}^{3}}}+\sum\limits_{r=1}^{r=15}{{{r}^{2}}} \right) $ .
We know that sum of squares of first n natural numbers is defined as $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ and sum of cubes of first n natural numbers is defined as $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+....+{{n}^{3}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4} $ .
$ \Rightarrow S=\dfrac{1}{2}{{\left( \dfrac{{{r}^{2}}{{\left( r+1 \right)}^{2}}}{4}+\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6} \right)}_{r=15}} $ .
$ \Rightarrow S=\dfrac{1}{2}\left( \dfrac{{{15}^{2}}{{\left( 16 \right)}^{2}}}{4}+\dfrac{15\left( 16 \right)\left( 31 \right)}{6} \right) $ .
$ \Rightarrow S=\dfrac{1}{2}\left( 14400+1240 \right) $ .
$ \Rightarrow S=\dfrac{1}{2}\left( 15640 \right) $ .
$ \Rightarrow S=7820 $ .
So, we have found the sum of the given series up to 15 terms as 7820.
$ \therefore, $ The correct option for the given problem is (a).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. Whenever we get this type of problem, we first find the general terms to represent every term of the series as we can see that this general leads us to the required solution. Similarly, we can expect problems to find the sum to 100 terms of the given series.
We start solving the problem by making the simplifications in the given series to find the general term that represents every term of the series. Once we find the general terms, we make the simplifications in it by making use of the fact that sum of squares of first n natural numbers is defined as $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ . We then substitute this in sum and make use of the sum of squares and cubes of first n natural numbers to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the sum of the given series $ 1+6+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ up to 15 terms.
Let us assume $ S=1+6+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
$ \Rightarrow S=\dfrac{3\left( 1 \right)}{3}+\dfrac{6\left( 5 \right)}{5}+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
$ \Rightarrow S=\dfrac{3\left( 1 \right)}{3}+\dfrac{6\left( 1+4 \right)}{5}+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
$ \Rightarrow S=\dfrac{3\left( {{1}^{2}} \right)}{3}+\dfrac{6\left( {{1}^{2}}+{{2}^{2}} \right)}{5}+\dfrac{9\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{7}+\dfrac{12\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{9}+\dfrac{15\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{11}+...... $ .
\[\Rightarrow S=\dfrac{\left( 3\times 1 \right)\left( {{1}^{2}} \right)}{\left( 2+1 \right)}+\dfrac{\left( 3\times 2 \right)\left( {{1}^{2}}+{{2}^{2}} \right)}{\left( 4+1 \right)}+\dfrac{\left( 3\times 3 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{\left( 6+1 \right)}+\dfrac{\left( 3\times 4 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{\left( 8+1 \right)}+\dfrac{\left( 3\times 5 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{\left( 10+1 \right)}+......\].
\[\Rightarrow S=\dfrac{\left( 3\times 1 \right)\left( {{1}^{2}} \right)}{\left( \left( 2\times 1 \right)+1 \right)}+\dfrac{\left( 3\times 2 \right)\left( {{1}^{2}}+{{2}^{2}} \right)}{\left( \left( 2\times 2 \right)+1 \right)}+\dfrac{\left( 3\times 3 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}} \right)}{\left( \left( 2\times 3 \right)+1 \right)}+\dfrac{\left( 3\times 4 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}} \right)}{\left( \left( 2\times 4 \right)+1 \right)}+\dfrac{\left( 3\times 5 \right)\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}} \right)}{\left( \left( 2\times 5 \right)+1 \right)}+......\] ---(1).
From equation (1), we can see that each term of the series is in the form of $ {{T}_{r}}=\dfrac{\left( 3r \right)\left( {{1}^{2}}+{{2}^{2}}+....+{{r}^{2}} \right)}{\left( 2r+1 \right)} $ .
So, we can write equation (1) as $ S=\sum\limits_{r=1}^{r=15}{{{T}_{r}}} $ ---(2).
Let us first simplify $ {{T}_{r}} $ and then substitute that in equation (2).
So, we have $ {{T}_{r}}=\dfrac{\left( 3r \right)\left( {{1}^{2}}+{{2}^{2}}+....+{{r}^{2}} \right)}{\left( 2r+1 \right)} $ .
We know that the sum of squares of first n natural numbers is defined as $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ .
$ \Rightarrow {{T}_{r}}=\dfrac{\left( 3r \right)\left( \dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6} \right)}{\left( 2r+1 \right)} $ .
$ \Rightarrow {{T}_{r}}=\dfrac{{{r}^{2}}\left( r+1 \right)}{2} $ .
$ \Rightarrow {{T}_{r}}=\dfrac{{{r}^{3}}+{{r}^{2}}}{2} $ ---(3).
Let us substitute equation (3) in equation (2).
$ \Rightarrow S=\sum\limits_{r=1}^{r=15}{\left( \dfrac{{{r}^{3}}+{{r}^{2}}}{2} \right)} $ .
$ \Rightarrow S=\dfrac{1}{2}\left( \sum\limits_{r=1}^{r=15}{{{r}^{3}}}+\sum\limits_{r=1}^{r=15}{{{r}^{2}}} \right) $ .
We know that sum of squares of first n natural numbers is defined as $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+....+{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ and sum of cubes of first n natural numbers is defined as $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+....+{{n}^{3}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4} $ .
$ \Rightarrow S=\dfrac{1}{2}{{\left( \dfrac{{{r}^{2}}{{\left( r+1 \right)}^{2}}}{4}+\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6} \right)}_{r=15}} $ .
$ \Rightarrow S=\dfrac{1}{2}\left( \dfrac{{{15}^{2}}{{\left( 16 \right)}^{2}}}{4}+\dfrac{15\left( 16 \right)\left( 31 \right)}{6} \right) $ .
$ \Rightarrow S=\dfrac{1}{2}\left( 14400+1240 \right) $ .
$ \Rightarrow S=\dfrac{1}{2}\left( 15640 \right) $ .
$ \Rightarrow S=7820 $ .
So, we have found the sum of the given series up to 15 terms as 7820.
$ \therefore, $ The correct option for the given problem is (a).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. Whenever we get this type of problem, we first find the general terms to represent every term of the series as we can see that this general leads us to the required solution. Similarly, we can expect problems to find the sum to 100 terms of the given series.
Recently Updated Pages
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE