
Find the sum of the following series to n terms 1.4.7+4.7.10+7.10.13+....
Answer
620.7k+ views
Hint: In any series numbers follow a particular order. Before finding the sum of series, observe the given series to find that order to make simple calculations.
Complete step-by-step answer:
In the given series, the first term is 1.4.7, the second term is 4.7.10 and the third term is 7.10.13 and so on.
We have to find the general form of the series. Observing the given series,
The given series follows an order, such that ‘n’ th term is $${T_n} = (3n - 2) \cdot (3n + 1) \cdot (3n + 4)$$
$$ \Rightarrow {T_n} = 27{n^3} + 27{n^2} - 18n - 18$$
Now we got a generalized form for the given series, we need to find the sum of the series.
Taking summation over ‘n’ on both sides of $${T_n}$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3} + 27{n^2} - 18n - 8} } )$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3}) + \sum {(27{n^2})} - \sum {(18n)} - \sum {(8)} } } $$
$$ \Rightarrow \sum {{T_n} = 27\sum {({n^3}) + 27\sum {({n^2})} - 18\sum {(n)} - 8} } n$$
$$\left[ {\because \sum {{n^3}} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4};\sum {{n^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6};\sum {n = \dfrac{{n(n + 1)}}{2}} ;\sum {k = n \times k} } \right]$$
$$ \Rightarrow \sum {{T_n} = 27\left( {\dfrac{{{n^2}{{(n + 1)}^2}}}{4}} \right) + 27\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) - 18\left( {\dfrac{{n(n + 1)}}{2}} \right)} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27n(n + 1)}}{4} + \dfrac{{27n(2n + 1)}}{7} - \dfrac{{18}}{2}} \right]} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
$\therefore $The sum of the given series is $$\sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
Note: First we found the general form for the given series. We used basic summation formulae to get the required solution. We applied those formulae and simplified the equation.
$$\sum {k = n \times k} $$, Where k is a constant.
Complete step-by-step answer:
In the given series, the first term is 1.4.7, the second term is 4.7.10 and the third term is 7.10.13 and so on.
We have to find the general form of the series. Observing the given series,
| (3n-2) | (3n+1) | (3n+4) | |
| n=1 | 1 | 4 | 7 |
| n=2 | 4 | 7 | 10 |
| n=3 | 7 | 10 | 13 |
The given series follows an order, such that ‘n’ th term is $${T_n} = (3n - 2) \cdot (3n + 1) \cdot (3n + 4)$$
$$ \Rightarrow {T_n} = 27{n^3} + 27{n^2} - 18n - 18$$
Now we got a generalized form for the given series, we need to find the sum of the series.
Taking summation over ‘n’ on both sides of $${T_n}$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3} + 27{n^2} - 18n - 8} } )$$
$$ \Rightarrow \sum {{T_n} = \sum {(27{n^3}) + \sum {(27{n^2})} - \sum {(18n)} - \sum {(8)} } } $$
$$ \Rightarrow \sum {{T_n} = 27\sum {({n^3}) + 27\sum {({n^2})} - 18\sum {(n)} - 8} } n$$
$$\left[ {\because \sum {{n^3}} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4};\sum {{n^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6};\sum {n = \dfrac{{n(n + 1)}}{2}} ;\sum {k = n \times k} } \right]$$
$$ \Rightarrow \sum {{T_n} = 27\left( {\dfrac{{{n^2}{{(n + 1)}^2}}}{4}} \right) + 27\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) - 18\left( {\dfrac{{n(n + 1)}}{2}} \right)} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27n(n + 1)}}{4} + \dfrac{{27n(2n + 1)}}{7} - \dfrac{{18}}{2}} \right]} - 8n$$
$$ \Rightarrow \sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
$\therefore $The sum of the given series is $$\sum {{T_n} = n(n + 1)\left[ {\dfrac{{27({n^2} + n)}}{4} + \dfrac{{27(2{n^2} + n)}}{7} - 9} \right]} - 8n$$
Note: First we found the general form for the given series. We used basic summation formulae to get the required solution. We applied those formulae and simplified the equation.
$$\sum {k = n \times k} $$, Where k is a constant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

