Answer
Verified
472.5k+ views
Hint: An itemized collection of terms in which repetition of any sort of series are allowed is known as sequence.
Sum of n terms of such sequence means adding all the ‘n’ terms.
It could be done with various algebraic expressions
Here, \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Further the concept of A.P & G.P series are used to solve such algebraic expressions
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. If the initial term of A.P is a, and common difference is ‘d’, then nth terms of sequence is
\[{a^n} = a + (n - 1)d,\] where n \[ = \] no. of terms.
Sum of A.P is given by \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right],\] where n \[ = \] no. of terms, a \[ = \] first term, d\[ = \]common difference.
Geometric sequence has a common ratio.
The formula for the nth term is:
\[{a_n} = a{r^{n - 1}}\]
Where, \[{a_n} = \] nth term of the sequence
a\[ = \]first term of the sequence
r\[ = \]common ratio.
Sum of n terms of a G.P is denoted by \[{S_n}\]i.e.
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{(r - 1)}}\]
Where, a \[ = \]first term of the sequence.
r\[\, = \]common ratio.
n \[ = \] no. of terms in the sequence.
Complete step-by-step answer:
Let \[{S_n}\] denote the sum to n terms of the given sequence
Then,
\[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....\]
First, we need to find the general term of the sequence i.e. \[{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]
Now, \[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]_____ (1).
Using identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] throughout the sequence (1), we have:
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2x \times x} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2{x^2} \times \dfrac{1}{{{x^2}}}} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2{x^6} \times \dfrac{1}{{{x^6}}}} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2{x^n} \times \dfrac{1}{{{x^n}}}} \right]\]
Simplify the series ${x^2}$ is canceled out.
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2} \right]\]
Combining term, we get:
\[{S_n} = \left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right] + \left[ {\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + \dfrac{1}{{x{}^6}} + ......\dfrac{1}{{{x^{2n}}}}} \right] + \left[ {2 + 2 + .........2n} \right]\]. ______ (2).
We see that \[\left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right]\] is a G.P with common ratio \[{x^2}\]and a\[ = {x^2}\]
Sum of finite. G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]\[ = \dfrac{{{x^2}\left( {{{\left( {{x^2}} \right)}^n} - 1} \right)}}{{{x^2} - 1}}\]
\[\dfrac{{{x^2}\left[ {{x^{2n}} - 1} \right]}}{{{x^2} - 1}}\] _______(3)
Now,
\[\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + ........ + \dfrac{1}{{{x^{2n}}}}\] is a G.P with a \[ = \dfrac{1}{{{x^2}}}\] and r \[ = \dfrac{1}{{{x^2}}}\]
Sum of finite G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} = \dfrac{{\dfrac{1}{{{x^2}}}\left( {{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1} \right)}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}\] ____________(4).
Substituting equation (3) & (4) in (2), we have:
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + \left( {2 + .... + 2} \right)\]n times
n times \[2\] will be \[2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + 2n\]
Simplify
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{\dfrac{{1 - {x^{2n}}}}{{{x^{2n}}}}}}{{\dfrac{{1 - {x^2}}}{{{x^2}}}}}} \right] + 2n\]
Common denominator is cancelled out.
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}}} \right] + 2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{ - \left( {{x^{2n}} - 1} \right)}}{{ - \left( {{x^2} - 1} \right)}}} \right] + 2n\]
Taking \[\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right]\] common from first \[2\]terms
\[{S_n} = \left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \left[ {{x^2} + \dfrac{1}{{{x^{2n}}}}} \right] + 2n\]
Hence, it is the required sum.
Note: In such a question all we need is to recognize the sequence whether it is a G.P or an A.P.
Also, as it clearly stated we need to find the sum of n terms i.e. we need to find the nth terms first. Arithmetic progression is of the form:- a-d, a, a+d, a+2d,.....
where a is the first term and
d is the common difference.
Sum of n terms of such sequence means adding all the ‘n’ terms.
It could be done with various algebraic expressions
Here, \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Further the concept of A.P & G.P series are used to solve such algebraic expressions
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. If the initial term of A.P is a, and common difference is ‘d’, then nth terms of sequence is
\[{a^n} = a + (n - 1)d,\] where n \[ = \] no. of terms.
Sum of A.P is given by \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right],\] where n \[ = \] no. of terms, a \[ = \] first term, d\[ = \]common difference.
Geometric sequence has a common ratio.
The formula for the nth term is:
\[{a_n} = a{r^{n - 1}}\]
Where, \[{a_n} = \] nth term of the sequence
a\[ = \]first term of the sequence
r\[ = \]common ratio.
Sum of n terms of a G.P is denoted by \[{S_n}\]i.e.
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{(r - 1)}}\]
Where, a \[ = \]first term of the sequence.
r\[\, = \]common ratio.
n \[ = \] no. of terms in the sequence.
Complete step-by-step answer:
Let \[{S_n}\] denote the sum to n terms of the given sequence
Then,
\[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....\]
First, we need to find the general term of the sequence i.e. \[{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]
Now, \[{S_n} = {\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + {\left( {{x^3} + \dfrac{1}{{{x^2}}}} \right)^2} + ....{\left( {{x^n} + \dfrac{1}{{{x^n}}}} \right)^2}\]_____ (1).
Using identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] throughout the sequence (1), we have:
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2x \times x} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2{x^2} \times \dfrac{1}{{{x^2}}}} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2{x^6} \times \dfrac{1}{{{x^6}}}} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2{x^n} \times \dfrac{1}{{{x^n}}}} \right]\]
Simplify the series ${x^2}$ is canceled out.
\[{S_n} = \left[ {{x^2} + \dfrac{1}{{{x^2}}} + 2} \right] + \left[ {{x^4} + \dfrac{1}{{{x^4}}} + 2} \right] + \left[ {{x^6} + \dfrac{1}{{{x^6}}} + 2} \right] + ......\left[ {{x^{2n}} + \dfrac{1}{{{x^{2n}}}} + 2} \right]\]
Combining term, we get:
\[{S_n} = \left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right] + \left[ {\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + \dfrac{1}{{x{}^6}} + ......\dfrac{1}{{{x^{2n}}}}} \right] + \left[ {2 + 2 + .........2n} \right]\]. ______ (2).
We see that \[\left[ {{x^2} + {x^4} + {x^6} + ..... + {x^{2n}}} \right]\] is a G.P with common ratio \[{x^2}\]and a\[ = {x^2}\]
Sum of finite. G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]\[ = \dfrac{{{x^2}\left( {{{\left( {{x^2}} \right)}^n} - 1} \right)}}{{{x^2} - 1}}\]
\[\dfrac{{{x^2}\left[ {{x^{2n}} - 1} \right]}}{{{x^2} - 1}}\] _______(3)
Now,
\[\dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}} + ........ + \dfrac{1}{{{x^{2n}}}}\] is a G.P with a \[ = \dfrac{1}{{{x^2}}}\] and r \[ = \dfrac{1}{{{x^2}}}\]
Sum of finite G.P \[ = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} = \dfrac{{\dfrac{1}{{{x^2}}}\left( {{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1} \right)}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}\] ____________(4).
Substituting equation (3) & (4) in (2), we have:
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + \left( {2 + .... + 2} \right)\]n times
n times \[2\] will be \[2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}}} \right)}^n} - 1}}{{\left( {\dfrac{1}{{{x^2}}}} \right) - 1}}} \right] + 2n\]
Simplify
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^2}}}\left[ {\dfrac{{\dfrac{{1 - {x^{2n}}}}{{{x^{2n}}}}}}{{\dfrac{{1 - {x^2}}}{{{x^2}}}}}} \right] + 2n\]
Common denominator is cancelled out.
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}}} \right] + 2n\]
\[{S_n} = {x^2}\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \dfrac{1}{{{x^{2n}}}}\left[ {\dfrac{{ - \left( {{x^{2n}} - 1} \right)}}{{ - \left( {{x^2} - 1} \right)}}} \right] + 2n\]
Taking \[\left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right]\] common from first \[2\]terms
\[{S_n} = \left[ {\dfrac{{{x^{2n}} - 1}}{{{x^2} - 1}}} \right] + \left[ {{x^2} + \dfrac{1}{{{x^{2n}}}}} \right] + 2n\]
Hence, it is the required sum.
Note: In such a question all we need is to recognize the sequence whether it is a G.P or an A.P.
Also, as it clearly stated we need to find the sum of n terms i.e. we need to find the nth terms first. Arithmetic progression is of the form:- a-d, a, a+d, a+2d,.....
where a is the first term and
d is the common difference.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India