![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Find the third vertex of a triangle if two of its vertices are at \[\left( { - 2,4} \right){\text{ and }}\left( {7, - 1} \right)\] and centroid at \[\left( {3,2} \right)\].
Answer
508.2k+ views
Hint: First of all, consider the unknown point as a variable. Then find the centroid of the triangle by using the centroid formula. As we have all points except the third vertex of the triangle, by equating them we will get the coordinates of the third vertex of the triangle. So, use this method to reach the solution of the given problem.
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)