Answer
Verified
498.3k+ views
Hint: First of all, consider the unknown point as a variable. Then find the centroid of the triangle by using the centroid formula. As we have all points except the third vertex of the triangle, by equating them we will get the coordinates of the third vertex of the triangle. So, use this method to reach the solution of the given problem.
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Complete step-by-step solution -
Let the given points are \[A{\text{ }}\left( {{x_1},{y_1}} \right) = \left( { - 2,4} \right)\] and \[B{\text{ }}\left( {{x_2},{y_2}} \right) = \left( {7, - 1} \right)\]
And the centroid is \[G{\text{ }}\left( {x,y} \right) = \left( {3,2} \right)\]
Consider the required point as \[C{\text{ }}\left( {{x_3},{y_3}} \right)\]
The diagram of the triangle with centroid is given below:
We know that the centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula \[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\].
\[ \Rightarrow \left( {3,2} \right) = \left( {\dfrac{{ - 2 + 7 + {x_3}}}{3},\dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}} \right)\]
Equating the terms of x-coordinate, we get
$\Rightarrow 3 = \dfrac{{ - 2 + 7 + {x_3}}}{3}$
$ \Rightarrow - 2 + 7 + {x_3} = 3 \times 3$
$ \Rightarrow 5 + {x_3} = 9 $
$\therefore {x_3} = 9 - 5 = 4$
Equating the terms of y-coordinate, we get
$\Rightarrow 2 = \dfrac{{4 + \left( { - 1} \right) + {y_3}}}{3}$
$\Rightarrow 4 + \left( { - 1} \right) + {y_3} = 2 \times 3 $
$\Rightarrow 3 + {y_3} = 6$
$\therefore {y_3} = 9 - 3 = 3$
Thus, the third vertex of the triangle is \[C{\text{ }}\left( {{x_3},{y_3}} \right) = \left( {4,3} \right)\].
Note: The centroid of a triangle with vertices \[{\text{A }}\left( {{x_1},{y_1}} \right)\], \[{\text{B }}\left( {{x_2},{y_2}} \right)\] and \[{\text{C }}\left( {{x_3},{y_3}} \right)\] is given by the formula\[{\text{G }}\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_1} + {y_1}}}{3}} \right)\]. Or else, we can the third vertex directly by using the formula \[{\text{C }} = 3{\text{G}} - \left( {{\text{A}} + {\text{B}}} \right)\].
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light