Answer
Verified
423.3k+ views
Hint: The gradient of the turning point of a curve is found by calculating the gradient of the tangent of that point. These tangents have positive and negative gradients. The horizontal tangents have zero gradient. The point which is at zero gradient is called the turning point.
Complete step by step solution:
Here, we will take an example, we will solve an equation to know how to find the turning point of a cubic function. The equation is \[2{x^3} + 5{x^2} - x - 6\].
First, we have to differentiate the given cubic equation. This will give us the derivative. The derivative is the rate of change of function at a point equivalent to the tangent drawn.
Each term of the cubic equation is in the form of \[y = a{x^n}\]. So, to differentiate, we need to apply the differentiating method,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = na{x^{n - 1}}\]
Applying this rule to the terms in the cubic equations, which is differentiating the first term of the equation \[2{x^3}\]gives us,
\[\dfrac{{dy}}{{dx}} = 6{x^2}\]
On differentiating the second term of the equation we get,
\[\dfrac{{dy}}{{dx}} = 10x\]
On differentiating the third term of the equation we get,
\[\dfrac{{dy}}{{dx}} = - 1\]
Finally, differentiating the last term of the equation, we get,
\[\dfrac{{dy}}{{dx}} = 0\]
The turning point of the gradient is \[0\]. So, equate the differentiated equation to \[0\].
\[ \Rightarrow 6{x^2} + 10x - 1 = 0\]
This is a quadratic equation. To solve this quadratic equation, we will use the formula for the quadratic equation which is,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], \[where\,a,b\,and\,c\,\]are constants.
Now comparing both the quadratic equations we get that \[a = 6,\,b = 10,\,c = - 1\]
Putting the values of \[a,b\,and\,c\]in the quadratic formula we get,
\[x = \dfrac{{ - 10 \pm \sqrt {{{10}^2} - (4 \cdot 6 \cdot ( - 1))} }}{{2 \cdot 6}}\]
\[ \Rightarrow x = \dfrac{{ - 10 \pm \sqrt {100 + 24} }}{{12}}\]
\[\Rightarrow x = \dfrac{{ - 10 + \sqrt {124} }}{{12}}\] and \[x = \dfrac{{ - 10 - \sqrt {124} }}{{12}}\]
\[ \Rightarrow x = 0.09642\] and \[x = - 1.76129\]
When we put the value of \[x = 0.09642\] into the equation \[2{x^3} + 5{x^2} - x - 6\] and we get:
\[y = - 6.048\]
This gives us the first value of the turning point:
Turning point = \[(0.095, - 6.048)\] = \[(0.10, - 6.05)\] to two decimal places.
Then we need to substitute the second value of \[x = - 1.76129\] we get in the equation \[2{x^3} + 5{x^2} - x - 6\] and we get: \[y = 0.344\]
So, now turning point = \[( - 1.761,0.344) = ( - 1.76,0.34)\]
Now, we will graph the points in the graph paper and see what kind of curve we get.
So, this is how we find the turning points of a cubic function and make the graph.
Note: The above method is easy to solve. But there is another method. It is called the Hit and Trial Method in which we take our desired values and put that in the equation and try to solve. Generally the values which we take should be the values which are more prone to be correct.
Complete step by step solution:
Here, we will take an example, we will solve an equation to know how to find the turning point of a cubic function. The equation is \[2{x^3} + 5{x^2} - x - 6\].
First, we have to differentiate the given cubic equation. This will give us the derivative. The derivative is the rate of change of function at a point equivalent to the tangent drawn.
Each term of the cubic equation is in the form of \[y = a{x^n}\]. So, to differentiate, we need to apply the differentiating method,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = na{x^{n - 1}}\]
Applying this rule to the terms in the cubic equations, which is differentiating the first term of the equation \[2{x^3}\]gives us,
\[\dfrac{{dy}}{{dx}} = 6{x^2}\]
On differentiating the second term of the equation we get,
\[\dfrac{{dy}}{{dx}} = 10x\]
On differentiating the third term of the equation we get,
\[\dfrac{{dy}}{{dx}} = - 1\]
Finally, differentiating the last term of the equation, we get,
\[\dfrac{{dy}}{{dx}} = 0\]
The turning point of the gradient is \[0\]. So, equate the differentiated equation to \[0\].
\[ \Rightarrow 6{x^2} + 10x - 1 = 0\]
This is a quadratic equation. To solve this quadratic equation, we will use the formula for the quadratic equation which is,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], \[where\,a,b\,and\,c\,\]are constants.
Now comparing both the quadratic equations we get that \[a = 6,\,b = 10,\,c = - 1\]
Putting the values of \[a,b\,and\,c\]in the quadratic formula we get,
\[x = \dfrac{{ - 10 \pm \sqrt {{{10}^2} - (4 \cdot 6 \cdot ( - 1))} }}{{2 \cdot 6}}\]
\[ \Rightarrow x = \dfrac{{ - 10 \pm \sqrt {100 + 24} }}{{12}}\]
\[\Rightarrow x = \dfrac{{ - 10 + \sqrt {124} }}{{12}}\] and \[x = \dfrac{{ - 10 - \sqrt {124} }}{{12}}\]
\[ \Rightarrow x = 0.09642\] and \[x = - 1.76129\]
When we put the value of \[x = 0.09642\] into the equation \[2{x^3} + 5{x^2} - x - 6\] and we get:
\[y = - 6.048\]
This gives us the first value of the turning point:
Turning point = \[(0.095, - 6.048)\] = \[(0.10, - 6.05)\] to two decimal places.
Then we need to substitute the second value of \[x = - 1.76129\] we get in the equation \[2{x^3} + 5{x^2} - x - 6\] and we get: \[y = 0.344\]
So, now turning point = \[( - 1.761,0.344) = ( - 1.76,0.34)\]
Now, we will graph the points in the graph paper and see what kind of curve we get.
So, this is how we find the turning points of a cubic function and make the graph.
Note: The above method is easy to solve. But there is another method. It is called the Hit and Trial Method in which we take our desired values and put that in the equation and try to solve. Generally the values which we take should be the values which are more prone to be correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE