Answer
Verified
396.6k+ views
Hint: Equate the trigonometric function to a variable. And then find the ranges of the \[\cos \] functions and solve for them. Find the value that satisfies the condition. Substitute the angle of \[\pi \] and evaluate it.
Complete step-by-step solution:
Let us learn about inverse trigonometric functions. Inverse trigonometric functions are also known as anti trigonometric functions, arcus functions, and cyclometric functions. These inverse trigonometric functions formulas enable us to find out any angles with any of the trigonometry ratios. The inverse trigonometric function does exactly function the opposite way of the normal trigonometric functions. The -1 in the exponent of the trigonometric is not the exponent but it is the symbol for inverse function. The range of \[{{\cos }^{-1}}\] function is \[\left( 0,\pi \right)\].
Now let us find the value of the given trigonometric function \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
Let \[y={{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
\[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}={{390}^{\circ }}\]
Multiply with \[\cos \] on both sides, we get
\[\Rightarrow \cos y=\cos \dfrac{13\pi }{6}\]
On substituting the value of \[\dfrac{\pi }{6}\], we get, i.e. \[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}=13\times 30={{390}^{\circ }}\]
\[\Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right)\]
As we know that the range of principal values of \[\cos \] is \[\left(0, \pi \right)\].
\[\therefore y={{390}^{\circ }}\] is not possible.
Now,
\[\begin{align}
& \Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos {{30}^{\circ }} \\
& \Rightarrow \cos y=\cos \left( {{30}^{\circ }}\times \frac{\pi }{180} \right) \\
& \Rightarrow \cos y=\cos \left( \frac{\pi }{6} \right) \\
& \therefore y=\frac{\pi }{6} \\
\end{align}\]
This is in the range of principle values of \[{{\cos }^{-1}}\] is \[\left( 0,\pi \right)\].
\[\therefore \] \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]=\[y=\dfrac{\pi }{6}\].
The graph of the given function is
Note: Here is the list of properties of inverse trigonometric functions.
\[\begin{align}
& \sin \left( {{\sin }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \cos \left( {{\cos }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \tan \left( {{\tan }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \infty \\
& \cot \left( {{\cot }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \le \text{ }x\text{ }\le \infty \\
& \sec \left( {{\sec }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
& \csc \left( {{\csc }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
\end{align}\]
The inverse trigonometric relations are not functions because for any given input there exists more than one output. That is, for a given number there exists more than one angle whose sine, cosine, etc., is that number.
Complete step-by-step solution:
Let us learn about inverse trigonometric functions. Inverse trigonometric functions are also known as anti trigonometric functions, arcus functions, and cyclometric functions. These inverse trigonometric functions formulas enable us to find out any angles with any of the trigonometry ratios. The inverse trigonometric function does exactly function the opposite way of the normal trigonometric functions. The -1 in the exponent of the trigonometric is not the exponent but it is the symbol for inverse function. The range of \[{{\cos }^{-1}}\] function is \[\left( 0,\pi \right)\].
Now let us find the value of the given trigonometric function \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
Let \[y={{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
\[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}={{390}^{\circ }}\]
Multiply with \[\cos \] on both sides, we get
\[\Rightarrow \cos y=\cos \dfrac{13\pi }{6}\]
On substituting the value of \[\dfrac{\pi }{6}\], we get, i.e. \[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}=13\times 30={{390}^{\circ }}\]
\[\Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right)\]
As we know that the range of principal values of \[\cos \] is \[\left(0, \pi \right)\].
\[\therefore y={{390}^{\circ }}\] is not possible.
Now,
\[\begin{align}
& \Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos {{30}^{\circ }} \\
& \Rightarrow \cos y=\cos \left( {{30}^{\circ }}\times \frac{\pi }{180} \right) \\
& \Rightarrow \cos y=\cos \left( \frac{\pi }{6} \right) \\
& \therefore y=\frac{\pi }{6} \\
\end{align}\]
This is in the range of principle values of \[{{\cos }^{-1}}\] is \[\left( 0,\pi \right)\].
\[\therefore \] \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]=\[y=\dfrac{\pi }{6}\].
The graph of the given function is
Note: Here is the list of properties of inverse trigonometric functions.
\[\begin{align}
& \sin \left( {{\sin }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \cos \left( {{\cos }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \tan \left( {{\tan }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \infty \\
& \cot \left( {{\cot }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \le \text{ }x\text{ }\le \infty \\
& \sec \left( {{\sec }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
& \csc \left( {{\csc }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
\end{align}\]
The inverse trigonometric relations are not functions because for any given input there exists more than one output. That is, for a given number there exists more than one angle whose sine, cosine, etc., is that number.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE