Answer
Verified
501.3k+ views
Hint: - Use the identity ${a^x} = \tan \theta $
Given equation is
$
{\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right) \\
= {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{{a^x}}} - {a^x}}}{{\dfrac{1}{{{a^x}}} + {a^x}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) \\
$
Let ${a^x} = \tan \theta ............\left( 1 \right)$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\tan \theta } \right)}^2}}}{{1 + {{\left( {tan\theta } \right)}^2}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$
Now, as we know $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) = 2\theta $
But as we know ${\cos ^{ - 1}}x$ will always lie between $\left( {0,\pi } \right)$
$
0 \leqslant {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \leqslant \pi \\
\Rightarrow 0 \leqslant 2\theta \leqslant \pi \\
\Rightarrow 0 \leqslant \theta \leqslant \dfrac{\pi }{2}...........\left( 2 \right) \\
$
Now from equation 1
$
{a^x} = \tan \theta \\
\Rightarrow \theta = {\tan ^{ - 1}}\left( {{a^x}} \right) \\
$
From equation 2
$
\Rightarrow 0 \leqslant {\tan ^{ - 1}}\left( {{a^x}} \right) \leqslant \dfrac{\pi }{2} \\
\Rightarrow \tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\
$
As we know the value of $\tan 0 = 0$ and $\tan \dfrac{\pi }{2} = \infty $
Therefore from above equation
$
\tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\
= 0 \leqslant {a^x} \leqslant \infty \\
$
So, this is the required solution.
Note: -In such types of questions first substitute ${a^x} = \tan \theta $, then simplify using some basic trigonometric properties which is stated above, then always remember the domain of ${\cos ^{ - 1}}x$, then again simplify we will get the required answer.
Given equation is
$
{\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right) \\
= {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{{a^x}}} - {a^x}}}{{\dfrac{1}{{{a^x}}} + {a^x}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) \\
$
Let ${a^x} = \tan \theta ............\left( 1 \right)$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\tan \theta } \right)}^2}}}{{1 + {{\left( {tan\theta } \right)}^2}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$
Now, as we know $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) = 2\theta $
But as we know ${\cos ^{ - 1}}x$ will always lie between $\left( {0,\pi } \right)$
$
0 \leqslant {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \leqslant \pi \\
\Rightarrow 0 \leqslant 2\theta \leqslant \pi \\
\Rightarrow 0 \leqslant \theta \leqslant \dfrac{\pi }{2}...........\left( 2 \right) \\
$
Now from equation 1
$
{a^x} = \tan \theta \\
\Rightarrow \theta = {\tan ^{ - 1}}\left( {{a^x}} \right) \\
$
From equation 2
$
\Rightarrow 0 \leqslant {\tan ^{ - 1}}\left( {{a^x}} \right) \leqslant \dfrac{\pi }{2} \\
\Rightarrow \tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\
$
As we know the value of $\tan 0 = 0$ and $\tan \dfrac{\pi }{2} = \infty $
Therefore from above equation
$
\tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\
= 0 \leqslant {a^x} \leqslant \infty \\
$
So, this is the required solution.
Note: -In such types of questions first substitute ${a^x} = \tan \theta $, then simplify using some basic trigonometric properties which is stated above, then always remember the domain of ${\cos ^{ - 1}}x$, then again simplify we will get the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE