
How do you find the value of $ \cos {300^ \circ } $ ?
Answer
495.6k+ views
Hint: In the given question, we are required to find the value of $ \cos {300^ \circ } $ . We will use the trigonometric formulae and identities such as $ \cos \left( {{{360}^ \circ } - \theta } \right) = \cos \theta $ to find the value of the trigonometric function at the particular angle. We should be clear with the signs of all trigonometric functions in the four quadrants.
Complete step-by-step answer:
So, we have to find the value of the trigonometric function $ \cos {300^ \circ } $ .
Now, we know that the trigonometric function cosine is positive in the fourth quadrant. Also, the value of the cosine function gets repeated after a regular interval of $ 2\pi $ radians.
We know that the angle $ {300^ \circ } $ lies in the fourth quadrant. So, the cosine of the angle will be a positive value.
So, we have, $ \cos {300^ \circ } $
$ \Rightarrow \cos {300^ \circ } = \cos \left( {{{360}^ \circ } - {{60}^ \circ }} \right) $
Now, we know that the value of $ \cos \left( {{{360}^ \circ } - \theta } \right) $ is equal to $ \cos \theta $ . So, we get,
$ \Rightarrow \cos {300^ \circ } = \cos \left( {{{60}^ \circ }} \right) $
Now, we know that cosine and sine are complementary ratios of each other. So, we have, $ \sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta $ . Hence, we get,
$ \Rightarrow \cos {300^ \circ } = \sin \left( {{{90}^ \circ } - {{60}^ \circ }} \right) $
Simplifying the expression,
$ \Rightarrow \cos {300^ \circ } = \sin \left( {{{30}^ \circ }} \right) $
Now, we also know that the value of $ \sin \left( {{{30}^ \circ }} \right) $ is $ \left( {\dfrac{1}{2}} \right) $ .
Hence, we get,
$ \Rightarrow \cos {300^ \circ } = \dfrac{1}{2} $
Therefore, the value of $ \cos {300^ \circ } $ is $ \left( {\dfrac{1}{2}} \right) $ .
So, the correct answer is “$ \left( {\dfrac{1}{2}} \right) $ ”.
Note: We can also solve the given problem using the periodicity of the cosine and sine functions. Periodic Function is a function that repeats its value after a certain interval. For a real number $ T > 0 $ , $ f\left( {x + T} \right) = f\left( x \right) $ for all x. If T is the smallest positive real number such that $ f\left( {x + T} \right) = f\left( x \right) $ for all x, then T is called the fundamental period. The fundamental period of cosine is $ 2\pi $ radians. So, $ \cos \left( \theta \right) = \cos \left( {\theta - 2\pi } \right) $ . Hence, we get, $ \cos {300^ \circ } = \cos \left( {{{300}^ \circ } - {{360}^ \circ }} \right) = \cos \left( { - {{60}^ \circ }} \right) = \dfrac{1}{2} $ as we know that cosine is also positive in fourth quadrant of Cartesian plane.
Complete step-by-step answer:
So, we have to find the value of the trigonometric function $ \cos {300^ \circ } $ .
Now, we know that the trigonometric function cosine is positive in the fourth quadrant. Also, the value of the cosine function gets repeated after a regular interval of $ 2\pi $ radians.
We know that the angle $ {300^ \circ } $ lies in the fourth quadrant. So, the cosine of the angle will be a positive value.
So, we have, $ \cos {300^ \circ } $
$ \Rightarrow \cos {300^ \circ } = \cos \left( {{{360}^ \circ } - {{60}^ \circ }} \right) $
Now, we know that the value of $ \cos \left( {{{360}^ \circ } - \theta } \right) $ is equal to $ \cos \theta $ . So, we get,
$ \Rightarrow \cos {300^ \circ } = \cos \left( {{{60}^ \circ }} \right) $
Now, we know that cosine and sine are complementary ratios of each other. So, we have, $ \sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta $ . Hence, we get,
$ \Rightarrow \cos {300^ \circ } = \sin \left( {{{90}^ \circ } - {{60}^ \circ }} \right) $
Simplifying the expression,
$ \Rightarrow \cos {300^ \circ } = \sin \left( {{{30}^ \circ }} \right) $
Now, we also know that the value of $ \sin \left( {{{30}^ \circ }} \right) $ is $ \left( {\dfrac{1}{2}} \right) $ .
Hence, we get,
$ \Rightarrow \cos {300^ \circ } = \dfrac{1}{2} $
Therefore, the value of $ \cos {300^ \circ } $ is $ \left( {\dfrac{1}{2}} \right) $ .
So, the correct answer is “$ \left( {\dfrac{1}{2}} \right) $ ”.
Note: We can also solve the given problem using the periodicity of the cosine and sine functions. Periodic Function is a function that repeats its value after a certain interval. For a real number $ T > 0 $ , $ f\left( {x + T} \right) = f\left( x \right) $ for all x. If T is the smallest positive real number such that $ f\left( {x + T} \right) = f\left( x \right) $ for all x, then T is called the fundamental period. The fundamental period of cosine is $ 2\pi $ radians. So, $ \cos \left( \theta \right) = \cos \left( {\theta - 2\pi } \right) $ . Hence, we get, $ \cos {300^ \circ } = \cos \left( {{{300}^ \circ } - {{360}^ \circ }} \right) = \cos \left( { - {{60}^ \circ }} \right) = \dfrac{1}{2} $ as we know that cosine is also positive in fourth quadrant of Cartesian plane.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

