Answer
Verified
430.8k+ views
Hint: Trigonometric functions are those functions that tell us the relation between the three sides of a right-angled triangle. Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively. Thus the given function can be converted in the form of tangent easily. First we find the value of tangent function then taking the reciprocal of tangent we get the cotangent value. Also we need to know the supplementary angle of sine.
Complete step-by-step solution:
Given, \[\cot \left( {\dfrac{\pi }{{12}}} \right)\].
We know that the
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\].
Now we find the value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\].
We can express \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
Then we have
\[
\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\]
We know the difference formula for tangent that is \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Here \[A = \dfrac{\pi }{3}\]and\[B = \dfrac{\pi }{4}\].
\[ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
We know \[\tan \dfrac{\pi }{3} = \sqrt 3 \] and \[\tan \dfrac{\pi }{4} = 1\]. Substituting we have,
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
To simplify further we rationalize this
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}\]
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}\]
Denominator is of the form \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
Square and square root will cancel out,
\[ \Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}\]
\[ \Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}\]
Taking 2 common we have,
\[ \Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}\]
\[ \Rightarrow - \left( {\sqrt 3 - 2} \right)\]
\[ \Rightarrow 2 - \sqrt 3 \]
Thus we have \[\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \].
Now we have,
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\]
\[ \Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}\].
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Complete step-by-step solution:
Given, \[\cot \left( {\dfrac{\pi }{{12}}} \right)\].
We know that the
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\].
Now we find the value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\].
We can express \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
Then we have
\[
\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\]
We know the difference formula for tangent that is \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Here \[A = \dfrac{\pi }{3}\]and\[B = \dfrac{\pi }{4}\].
\[ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
We know \[\tan \dfrac{\pi }{3} = \sqrt 3 \] and \[\tan \dfrac{\pi }{4} = 1\]. Substituting we have,
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
To simplify further we rationalize this
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}\]
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}\]
Denominator is of the form \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
Square and square root will cancel out,
\[ \Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}\]
\[ \Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}\]
Taking 2 common we have,
\[ \Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}\]
\[ \Rightarrow - \left( {\sqrt 3 - 2} \right)\]
\[ \Rightarrow 2 - \sqrt 3 \]
Thus we have \[\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \].
Now we have,
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\]
\[ \Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}\].
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE